Skip to main content
Log in

A new memory element based on silicon nanoclusters in a ZrO2 insulator with a high permittivity for electrically erasable read-only memory

  • Physics of Semiconductor Devices
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The write and erase function and the data retention characteristics of a memory element designed to be used in electrically erasable read-only memory and based on a silicon-oxide-(silicon dot)-oxide-polysilicon structure, in which either a SiO2 insulator or a ZrO2 high-permittivity insulator are used as blocking oxides, are simulated. It is established that the use of the high-permittivity insulator gives rise to a number of effects: spurious injection from poly-Si is reduced; the electric field in the tunneling oxide increases; it becomes possible to increase the thickness of the tunneling insulator and, consequently, to increase the data retention time; and lower voltages for the write and erase functions can be used. Programming with a pulse of ±11 V possessing a width of 10 ms makes it possible to retain a memory window of ∼3 V for 10 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Sze, in Future Trends in Microelectronics, Ed. by S. Luryi, J. Xu, and A. Zaslavsky (Wiley, New York, 1999), p. 135.

    Google Scholar 

  2. P. Pavan, R. Bez, P. Olivo, and E. Zanony, Proc. IEEE 85, 1248 (1997).

    Article  Google Scholar 

  3. J. Bu and M. H. White, Solid-State Electron. 45, 113 (2001).

    Google Scholar 

  4. International Technology Roadmap, http://public.itrs.net/ (2003).

  5. K. Komiya and Y. Omura, J. Appl. Phys. 92, 2953 (2002).

    Article  Google Scholar 

  6. Y. I. Hanafi, S. Tiwari, and I. Khan, IEEE Trans. Electron Devices 43, 1553 (1996).

    Article  Google Scholar 

  7. Y.-C. King, T.-J. King, and C. Hu, IEEE Electron Device Lett. 20, 409 (1999).

    Google Scholar 

  8. B. De Salvo, G. Gibaudo, G. Pananakakis, et al., IEEE Trans. Electron Devices 48, 1789 (2001).

    Google Scholar 

  9. Z. Liu, C. Lee, V. Narayanan, et al., IEEE Trans. Electron Devices 49, 1614 (2002).

    Google Scholar 

  10. M. She and T.-J. King, IEEE Trans. Electron Devices 50, 1934 (2003).

    Google Scholar 

  11. D.-W. Kim, T. Kim, and S. K. Banerjee, IEEE Trans. Electron Devices 50, 1823 (2003).

    Google Scholar 

  12. J. J. Lee, X. Wang, W. Bai, et al., IEEE Trans. Electron Devices 50, 2067 (2003).

    Google Scholar 

  13. G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys. 89, 5243 (2001).

    Article  ADS  Google Scholar 

  14. E. P. Gusev, E. Cartier, D. A. Buchanan, et al., Microelectron. Eng. 59, 341 (2001).

    Article  Google Scholar 

  15. G. Ya. Krasnikov, Structural and Technological Features of Submicron MOS Transistors (Tekhnosfera, Moscow, 2002) [in Russian].

    Google Scholar 

  16. V. A. Gritsenko, K. A. Nasyrov, and Yu. N. Novikov, in Proceedings of 12th Workshop on Dielectrics in Microelectronics (WODIM) (Grenoble, France, 2002), p. 179.

  17. V. A. Gritsenko, K. A. Nasyrov, Yu. N. Novikov, and A. L. Aseev, Mikroélektronika 32(2), 69 (2003) [Russ. Microelectronics 32, 69 (2003)].

    Google Scholar 

  18. V. A. Gritsenko, K. A. Nasyrov, Yu. N. Novikov, et al., Solid-State Electron. 47, 1651 (2003).

    Article  Google Scholar 

  19. C. Lee, S. Hur, Y. Shin, et al., in Abstracts of 2002 International Conference on Solid State Devices and Materials (Nagoya, Japan, 2002), p. 162.

  20. V. A. Gritsenko, E. E. Meerson, and Yu. N. Morokov, Phys. Rev. B 57, R2081 (1997).

  21. V. A. Gritsenko, Design and Electronic Properties of Amorphous Insulators in Silicon MIS Structures (Nauka, Novosibirsk, 1993) [in Russian].

    Google Scholar 

  22. V. V. Afanas’ev, M. Houssa, A. Stesmans, et al., Microelectron. Eng. 59, 335 (2001).

    Google Scholar 

  23. M. Houssa, M. Tuominen, M. Naili, et al., J. Appl. Phys. 87, 8615 (2000).

    Article  ADS  Google Scholar 

  24. S. Miyazaki, M. Narasaki, M. Ogasawara, and M. Hirose, Microelectron. Eng. 59, 373 (2001).

    Article  Google Scholar 

  25. V. I. Belyi, V. V. Voskoboinikov, A. S. Ginovker, et al., Mikroélektronika 2, 182 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 39, No. 6, 2005, pp. 748–753.

Original Russian Text Copyright © 2005 by V. Gritsenko, Nasyrov, D. Gritsenko, Novikov, Aseev, J. Lee, J.-W. Lee, Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gritsenko, V.A., Nasyrov, K.A., Gritsenko, D.V. et al. A new memory element based on silicon nanoclusters in a ZrO2 insulator with a high permittivity for electrically erasable read-only memory. Semiconductors 39, 716–721 (2005). https://doi.org/10.1134/1.1944865

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1944865

Keywords

Navigation