Skip to main content
Log in

The transport and thermoelectric properties of semiconducting rhenium silicide

  • Electronic and Optical Properties of Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The transport and thermoelectric properties of semiconducting rhenium silicide ReSi1.75 are comprehensively studied both experimentally and theoretically. Single-crystal samples of undoped and aluminumdoped ReSi1.75 are grown by floating-zone melting using optical heating. The temperature dependences of the resistivity, Hall coefficient, and Seebeck coefficient (thermoelectric power) are measured in the range 77–800 K. At room temperature, the charge-carrier concentration for the undoped rhenium silicide is 1019 cm−3 and the carrier mobility is 30 cm2/(V s). The theoretical study of the transport and thermoelectric properties includes ab initio calculation of the band structure; estimation of the carrier effective masses; simulation of the electron and hole mobility, taking into account classical scattering mechanisms; and calculation of the Seebeck coefficient. The results of the simulation and the experimental data are in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Ivanenko, H. Lange, and A. Heinrich, in Semiconducting Silicides, Ed. by V. E. Borisenko (Springer, Berlin, 2000), Chap. 5, p. 243.

    Google Scholar 

  2. C. A. Kleint, A. Heinrich, H. Griessmann, et al., in Proceedings of MRS Fall Meeting on Thermoelectric Materials, 1998 (Boston, USA, 1998); Mater. Res. Soc. Symp. Proc. 545, 165 (1999).

  3. A. Heinrich, C. Kleint, H. Griessmann, et al., in Proceedings of XVIII International Conference on Thermoelectrics (Baltimore, USA, 1999), p. 161.

  4. U. Gottlieb, B. Lambert-Andron, F. Nava, et al., J. Appl. Phys. 78, 3902 (1995).

    Article  ADS  Google Scholar 

  5. I. Ali, P. Muret, and A. Haydar, Semicond. Sci. Technol. 16, 966 (2001).

    Article  ADS  Google Scholar 

  6. L. Ivanenko, V. L. Shaposhnikov, A. B. Filonov, et al., Microelectron. Eng. 64(1–4), 225 (2002).

    Google Scholar 

  7. D. Souptel, G. Behr, L. Ivanenko, et al., J. Cryst. Growth 244, 296 (2002).

    Article  Google Scholar 

  8. A. B. Filonov, D. B. Migas, V. L. Shaposhnikov, et al., Europhys. Lett. 46, 376 (1999); Microelectron. Eng. 50, 249 (2000).

    Article  ADS  Google Scholar 

  9. P. Blaha, K. Schwarz, P. Sorantin, and S. B. Trickey, Comput. Phys. Commun. 59, 399 (1990).

    ADS  Google Scholar 

  10. V. L. Bonch-Bruevich and S. G. Kalashnikov, Physics of Semiconductors, 2nd ed. (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  11. B. Ridley, Quantum Processes in Semiconductors (Clarendon, Oxford, 1982; Mir, Moscow, 1986), p. 143.

    Google Scholar 

  12. T. Siegrist, F. Hulliger, and G. Travaglini, J. Less-Common Met. 92, 119 (1983).

    Article  Google Scholar 

  13. A. F. Ioffe, Physics of Semiconductors (Akad. Nauk SSSR, Leningrad, 1957; Infosearch, London, 1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 39, No. 4, 2005, pp. 419–423.

Original Russian Text Copyright © 2005 by Filonov, Krivosheev, Ivanenko, Behr, Schumann, Souptel, Borisenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filonov, A.B., Krivosheev, A.E., Ivanenko, L.I. et al. The transport and thermoelectric properties of semiconducting rhenium silicide. Semiconductors 39, 395–399 (2005). https://doi.org/10.1134/1.1900250

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1900250

Keywords

Navigation