Skip to main content
Log in

Ion synthesis of copper nanoparticles in sapphire and their modification by high-power excimer laser pulses: A review

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Composite layers made in sapphire by implantation of 40-keV Cu+ ions at a dose of 1 × 1017 cm−2 and an ion beam current density varying from 2.5 to 10 μA/cm2 are studied. It is shown that ion implantation makes it possible to synthesize a composite layer containing copper nanoparticles at the surface of the insulator. However, the nanoparticle size distribution in this layer is nonuniform. The composite layer is exposed to high-power excimer laser radiation with the aim of modifying the size and size distribution of the metal nanoparticles in it. The resulting structures are examined by Rutherford backscattering, optical reflection spectroscopy, and atomic force microscopy. It is found that the laser irradiation diminishes copper nanoparticles in the composite layer. Experimental data on laser modification may be explained by photofragmentation and/or melting of the nanoparticles in the sapphire matrix under the action of nanosecond laser pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Flytzanis, F. Hache, M. C. Klein, D. Recard, and P. Rousignol, Nonlinear Optics in Composite Materials (Elsevier, Amsterdam, 1991).

    Google Scholar 

  2. A. L. Stepanov, I. B. Khaibullin, P. Taunsend, et al., RF Patent No. 2,156,490 (2000).

  3. P. T. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge Univ. Press, Cambridge, 1994).

    Google Scholar 

  4. A. L. Stepanov and D. E. Hole, Recent Res. Devel. Appl. Phys. 5, 1 (2002).

    Google Scholar 

  5. J. Davenas, A. Perez, P. Thevenard, and C. H. S. Dupuy, Phys. Status Solidi A 19, 679 (1973).

    Google Scholar 

  6. M. Treileux, P. Thevenard, G. Ghassagne, and L. H. Hobbs, Phys. Status Solidi A 48, 425 (1978).

    Google Scholar 

  7. C. J. McHargue, G. C. Farlow, P. S. Sklad, et al., Nucl. Instrum. Methods Phys. Res. B 19–20, 813 (1987).

    Google Scholar 

  8. C. J. McHargue, P. S. Sklad, and C. W. White, Nucl. Instrum. Methods Phys. Res. B 46, 79 (1990).

    ADS  Google Scholar 

  9. C. J. McHargue, P. S. Sklad, C. W. White, et al., J. Mater. Res. 6, 2145 (1991).

    ADS  Google Scholar 

  10. C. J. McHargue, S. X. Ren, P. S. Sklad, et al., Nucl. Instrum. Methods Phys. Res. B 166, 173 (1996).

    ADS  Google Scholar 

  11. C. J. McHargue, S. X. Ren, and J. D. Hunn, Mater. Sci. Eng., A 253, 1 (1998).

    Google Scholar 

  12. M. Ohkubo, T. Hioki, and J. Kawamoto, J. Appl. Phys. 62, 3069 (1987).

    Article  ADS  Google Scholar 

  13. M. Ohkubo, T. Hioki, N. Suzuki, et al., Nucl. Instrum. Methods Phys. Res. B 39, 675 (1989).

    Article  ADS  Google Scholar 

  14. G. C. Farlow, P. S. Sklad, C. W. White, and C. J. McHargue, J. Mater. Res. 5, 1502 (1990).

    ADS  Google Scholar 

  15. C. Donnet, G. Marest, N. Moncoffre, et al., Nucl. Instrum. Methods Phys. Res. B 59–60, 1205 (1991).

    Google Scholar 

  16. P. S. Sklad, C. J. McHargue, C. W. White, and G. C. Farlow, J. Mater. Sci. 27, 5895 (1992).

    Article  Google Scholar 

  17. H.-G. Jang, H.-B. Kim, J.-H. Joo, et al., Nucl. Instrum. Methods Phys. Res. B 124, 528 (1997).

    Article  ADS  Google Scholar 

  18. T. Kobayashi and T. Terai, Nucl. Instrum. Methods Phys. Res. B 141, 441 (1998).

    Article  ADS  Google Scholar 

  19. T. Kobayashi, A. Nakanishi, K. Fukumura, and G. Langouche, J. Appl. Phys. 83, 4631 (1998).

    ADS  Google Scholar 

  20. I. Sakamoto, S. Honda, H. Tanoue, et al., Nucl. Instrum. Methods Phys. Res. B 148, 1039 (1999).

    Article  ADS  Google Scholar 

  21. N. Hayashi, T. Toriyama, H. Wakabayashi, et al., Nucl. Instrum. Methods Phys. Res. B 158–159, 193 (2002).

    Google Scholar 

  22. H. Wakabayashi, T. Hirai, T. Toriyama, et al., Phys. Status Solidi 189, 515 (2002).

    ADS  Google Scholar 

  23. E. Alves, C. MacHargue, R. C. da Silva, et al., Surf. Coat. Technol. 128–129, 434 (2002).

    Google Scholar 

  24. T. Monteiro, C. Boemare, M. J. Soares, et al., Nucl. Instrum. Methods Phys. Res. B 191, 638 (2002).

    Article  ADS  Google Scholar 

  25. C. W. White, S. P. Withrow, K. D. Sorge, et al., J. Appl. Phys. 93, 5656 (2003).

    Article  ADS  Google Scholar 

  26. Y. Saito, H. Horie, and S. Suganomata, Nucl. Instrum. Methods Phys. Res. B 59–60, 1173 (1991).

    Google Scholar 

  27. C. Marques, M. M. Cruz, R. C. da Silva, and E. Alves, Nucl. Instrum. Methods Phys. Res. B 175–177, 500 (2001).

    Google Scholar 

  28. C. Marques, M. M. Cruz, R. C. da Silva, and E. Alves, Surf. Coat. Technol. 158–159, 54 (2002).

    Google Scholar 

  29. A. Meldrum, L. A. Boatner, and K. Sorge, Nucl. Instrum. Methods Phys. Res. B 207, 36 (2003).

    ADS  Google Scholar 

  30. T. Kobayashi, T. Terai, T. Yoneoka, and S. Tanaka, Nucl. Instrum. Methods Phys. Res. B 116, 187 (1996).

    Article  ADS  Google Scholar 

  31. X. Xiang, X. T. Zu, S. Zhu, and L. M. Wang, Appl. Phys. Lett. 84, 52 (2004).

    ADS  Google Scholar 

  32. D. Ila, E. K. Williams, S. Sarkisov, et al., Mater. Res. Soc. Symp. Proc. 504, 381 (1998).

    Google Scholar 

  33. M. Ikeyama, S. Nakao, M. Tazawa, et al., Nucl. Instrum. Methods Phys. Res. B 175–177, 652 (2001).

    Google Scholar 

  34. M. Ikeyama, S. Nakao, and M. Tazawa, Surf. Coat. Technol. 158–159, 720 (2002).

    Google Scholar 

  35. A. L. Stepanov, U. Kreibig, D. E. Hole, et al., Nucl. Instrum. Methods Phys. Res. B 178, 120 (2001).

    Article  ADS  Google Scholar 

  36. A. L. Stepanov, Pis’ma Zh. Tekh. Fiz. 28(1), 58 (2002) [Tech. Phys. Lett. 28, 864 (2002)].

    Google Scholar 

  37. G. Battaglin, R. Bertoncello, M. Casarin, et al., J. Non-Cryst. Solids 253, 251 (1999).

    Article  Google Scholar 

  38. M. Rahmani, L. H. Abu-Hassan, P. D. Townsend, et al., Nucl. Instrum. Methods Phys. Res. B 32, 56 (1988).

    Article  ADS  Google Scholar 

  39. M. Rahmani and P. D. Townsend, Vacuum 39, 1157 (1989).

    Article  Google Scholar 

  40. G. Steiner, M. T. Pham, C. Kuhne, and R. Salzer, Fresenius J. Anal. Chem. 362, 9 (1998).

    Article  Google Scholar 

  41. E. Alves, R. C. da Silva, O. Conde, et al., Nucl. Instrum. Methods Phys. Res. B 148, 1049 (1999).

    Article  ADS  Google Scholar 

  42. M. Ohkubo and N. Suzuki, Philos. Mag. Lett. 57, 261 (1988).

    Google Scholar 

  43. D. O. Henderson, R. Mu, M. A. George, et al., J. Vac. Sci. Technol. B 13, 1198 (1995).

    Article  Google Scholar 

  44. C. Marques, E. Alves, R. C. da Silva, et al., Nucl. Instrum. Methods Phys. Res. B 204, 139 (2004).

    ADS  Google Scholar 

  45. N. Can, P. D. Townsend, and D. E. Hole, Appl. Phys. Lett. 65, 1871 (1994).

    Article  ADS  Google Scholar 

  46. N. Can, P. D. Townsend, D. E. Hole, et al., J. Appl. Phys. 78, 6737 (1995).

    ADS  Google Scholar 

  47. N. Hayashi, I. Sakamoto, H. Wakabayashi, et al., J. Appl. Phys. 94, 2597 (2003).

    ADS  Google Scholar 

  48. C. E. Vallet, C. W. White, S. P. Withrow, et al., J. Appl. Phys. 92, 6200 (2002).

    Article  ADS  Google Scholar 

  49. C. W. White, S. P. Withrow, J. D. Budai, et al., Nucl. Instrum. Methods Phys. Res. B 191, 437 (2002).

    Article  ADS  Google Scholar 

  50. S. P. Withrow, C. W. White, J. D. Budai, et al., J. Magn. Magn. Mater. 260, 319 (2003).

    Article  ADS  Google Scholar 

  51. G. C. Farlow, P. S. Sklad, C. W. White, and C. J. McHargue, J. Mater. Res. 5, 1502 (1990).

    ADS  Google Scholar 

  52. T. Miyano, T. Matsumae, Y. Yoko-o, et al., Nucl. Instrum. Methods Phys. Res. B 59–60, 1167 (1991).

    Google Scholar 

  53. T. Futagami, Y. Aoki, O. Yoda, and S. Nagai, Nucl. Instrum. Methods Phys. Res. B 88, 261 (1994).

    Article  ADS  Google Scholar 

  54. J. Bigarre, S. Fayeulle, D. Treheux, and N. Moncoffre, J. Appl. Phys. 82, 3740 (1997).

    ADS  Google Scholar 

  55. T. Kobayashi and T. Terai, Nucl. Instrum. Methods Phys. Res. B 148, 1059 (1999).

    Article  ADS  Google Scholar 

  56. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, Berlin, 1995).

    Google Scholar 

  57. A. L. Stepanov, Rev. Adv. Mater. Sci. 4, 123 (2003).

    Google Scholar 

  58. R. W. Wood, P. D. Townsend, N. D. Skelland, et al., J. Appl. Phys. 74, 5754 (1993).

    ADS  Google Scholar 

  59. A. L. Stepanov, D. E. Hole, A. A. Bukharaev, et al., Appl. Surf. Sci. 136, 298 (1998).

    Article  Google Scholar 

  60. A. L. Stepanov, D. E. Hole, and P. D. Townsend, Nucl. Instrum. Methods Phys. Res. B 149, 89 (1999).

    Article  ADS  Google Scholar 

  61. A. L. Stepanov and D. E. Hole, Zh. Prikl. Spektrosk. 68, 120 (2001).

    Google Scholar 

  62. A. L. Stepanov, V. N. Popok, D. E. Hole, and A. A. Bukharaev, Fiz. Tverd. Tela (St. Petersburg) 43, 2100 (2002) [Phys. Solid State 43, 2192 (2002)].

    Google Scholar 

  63. A. L. Stepanov, Philos. Mag. Lett. 82, 149 (2002).

    Article  Google Scholar 

  64. N. P. Barradas, C. Jeynes, and R. P. Webb, Appl. Phys. Lett. 71, 291 (1997).

    Article  ADS  Google Scholar 

  65. J. D. Demaree, S. R. Kirkpatrick, A. R. Kirkpatrick, and J. K. Hirvonen, Nucl. Instrum. Methods Phys. Res. B 127–128, 603 (1997).

    Google Scholar 

  66. C. G. Lee, Y. Takeda, N. Kishimoto, and N. Umeda, J. Appl. Phys. 90, 2195 (2001).

    ADS  Google Scholar 

  67. V. B. Odzhaev, I. P. Kozlov, V. N. Popok, and D. V. Sviridov, Ion Implantation in Polymers (Belarusk. Gos. Univ., Minsk, 1998) [in Russian].

    Google Scholar 

  68. S. Deying, Y. Saito, and S. Suganomata, Jpn. J. Appl. Phys. 33, L966 (1994).

    Article  Google Scholar 

  69. A. L. Stepanov, S. N. Abdullin, R. I. Khaibullin, et al., Mater. Res. Soc. Symp. Proc. 392, 267 (1995).

    Google Scholar 

  70. S. N. Abdullin, A. L. Stepanov, R. I. Khaibullin, et al., Fiz. Tverd. Tela (St. Petersburg) 38, 2574 (1996) [Phys. Solid State 38, 1412 (1996)].

    Google Scholar 

  71. J. Bigarre, S. Fayeulle, D. Treheux, and N. Moncoffre, J. Appl. Phys. 82, 3740 (1997).

    ADS  Google Scholar 

  72. J. F. Ziegel, J. P. Biersak, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1996).

    Google Scholar 

  73. A. L. Stepanov, V. A. Zhikharev, and I. B. Khaibullin, Fiz. Tverd. Tela (St. Petersburg) 43, 733 (2001) [Phys. Solid State 43, 766 (2001)].

    Google Scholar 

  74. A. L. Stepanov, V. A. Zhikharev, D. E. Hole, et al., Nucl. Instrum. Methods Phys. Res. B 166–167, 166 (2000).

    Google Scholar 

  75. V. M. Konoplev, Radiat. Eff. Lett. Sect. 87, 207 (1986).

    Google Scholar 

  76. V. M. Konoplev, Poverkhnost 2, 207 (1986).

    Google Scholar 

  77. P. W. Wang, Appl. Surf. Sci. 120, 291 (1997).

    Google Scholar 

  78. L. C. Nistor, J. van Landuyt, J. D. Barton, et al., J. Non-Cryst. Solids 162, 217 (1992).

    Google Scholar 

  79. N. Kishimoto, N. Umeda, Y. Takeda, et al., Nucl. Instrum. Methods Phys. Res. B 148, 1017 (1999).

    Article  ADS  Google Scholar 

  80. A. L. Stepanov, Opt. Spektrosk. 89, 444 (2000) [Opt. Spectrosc. 89, 408 (2000)].

    Google Scholar 

  81. D. O. Henderson, R. Mu, A. Ueda, et al., J. Non-Cryst. Solids 205–207, 788 (1996).

    Google Scholar 

  82. A. A. Bukharaev, V. M. Janduganov, E. A. Samarsky, and N. V. Berdunov, Appl. Surf. Sci. 103, 49 (1996).

    Article  Google Scholar 

  83. M. T. Pham, W. Matz, and H. Seifarth, Anal. Chim. Acta 350, 209 (1997).

    Article  Google Scholar 

  84. A. L. Stepanov and V. N. Popok, Pis’ma Zh. Tekh. Fiz. 29(1), 20 (2003) [Tech. Phys. Lett. 29, 977 (2003)].

    Google Scholar 

  85. A. L. Stepanov and V. N. Popok, Surf. Sci. 566–568, 1250 (2004).

    Google Scholar 

  86. G. Mie, Ann. Phys. 25, 377 (1908).

    MATH  Google Scholar 

  87. M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon Press, Oxford, 1969; Nauka, Moscow, 1973).

    Google Scholar 

  88. A. L. Stepanov, in Metal-Polymer Nanocomposites, Ed. by L. Nicolais and G. Carotenuto (Wiley, New York, 2004), Chap. 8.

    Google Scholar 

  89. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).

    Google Scholar 

  90. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).

    ADS  Google Scholar 

  91. A. L. Stepanov, D. E. Hole, and P. D. Townsend, J. Non-Cryst. Solids 260, 65 (1999).

    Article  Google Scholar 

  92. D. Baüerle, Laser Processing and Chemistry (Springer-Verlag, Berlin, 1996).

    Google Scholar 

  93. J. Y. Bigot, J. C. Merle, O. Cregut, and A. Daunois, Phys. Rev. Lett. 75, 4702 (1995).

    Article  ADS  Google Scholar 

  94. P. V. Kamat, M. Flumiani, and G. V. Harland, J. Phys. Chem. B 102, 3123 (1998).

    Article  Google Scholar 

  95. S. Link, C. Burda, M. B. Mohamed, et al., J. Chem. Phys. B 103, 1165 (1999).

    Google Scholar 

  96. S. Link and M. A. El-Sayed, Annu. Rev. Phys. Chem. 54, 331 (2003).

    Article  Google Scholar 

  97. D. Dalacu and L. Martinu, Appl. Phys. Lett. 77, 4283 (2000).

    Article  ADS  Google Scholar 

  98. K. Dick, T. Dhanasekaran, Z. Zhang, and D. Meisel, J. Am. Chem. Soc. 124, 2312 (2002).

    Article  Google Scholar 

  99. T. Castro, R. Reifenberg, E. Choi, and R. P. Andres, Phys. Rev. B 42, 8548 (1990).

    Article  ADS  Google Scholar 

  100. J. Roiz, A. Oliver, E. Munoz, et al., J. Appl. Phys. 95, 1783 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Tekhnichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 75, No. 3, 2005, pp. 1–14.

Original Russian Text Copyright © 2005 by Stepanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stepanov, A.L. Ion synthesis of copper nanoparticles in sapphire and their modification by high-power excimer laser pulses: A review. Tech. Phys. 50, 285–297 (2005). https://doi.org/10.1134/1.1884727

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1884727

Keywords

Navigation