Skip to main content
Log in

Creation of Composite Optical Elements by the Ion-Beam Surface-Activation Method for Laser Applications

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

A method for creating composite active elements from dissimilar optical materials, which consists in treating surfaces with a beam of heavy argon ions and forming an optical contact between the surfaces, is implemented and tested. Composite active elements Yb:YAG/YAG and Yb:YAG/sapphire in the geometry of a thin disk are created. The elements are tested in a high-average-power laser scheme. Lasing with a differential efficiency of 48% at at a power of more than 100 W is obtained using the Yb:YAG/sapphire element, while the lasing efficiency for the Yb:YAG/YAG element is 39%, which is a consequence of more efficient cooling of the active medium through sapphire.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. S. M. Hooker, Nat. Photonics 7 (10), 775 (2013). https://doi.org/10.1038/nphoton.2013.234

    Article  CAS  Google Scholar 

  2. B. A. Reagan, M. Berrill, K. A. Wernsing, et al., Phys. Rev. A 89, 053820 (2014). https://doi.org/10.1103/PhysRevA.89.053820

    Article  CAS  Google Scholar 

  3. T. Nubbemeyer, M. Kaumanns, M. Ueffing, et al., Opt. Lett. 42, 1381 (2017). https://doi.org/10.1364/OL.42.001381

    Article  CAS  Google Scholar 

  4. F. Lesparre, J. T. Gomes, X. Délen, et al., Opt. Lett. 41, 1628 (2016). https://doi.org/10.1364/OL.41.001628

    Article  CAS  Google Scholar 

  5. B. E. Schmidt, A. Hage, T. Mans, et al., Opt. Express 25, 17549 (2017). https://doi.org/10.1364/OE.25.017549

    Article  CAS  Google Scholar 

  6. U. Griebner, R. Grunwald, and H. Schonnagel, Opt. Commun. 164 (4–6), 185 (1999). https://doi.org/10.1016/S0030-4018(99)00185-6

    Article  CAS  Google Scholar 

  7. I. Mukhin, E. Perevezentsev, and O. Palashov, Opt. Mater. Express 4, 266 (2014). https://doi.org/10.1364/OME.4.000266

    Article  CAS  Google Scholar 

  8. N. G. Traggis and N. R. Claussen, Proc. SPIE 7578, 75780F (2010). https://doi.org/10.1117/12.846285

    Article  CAS  Google Scholar 

  9. H. Lee, H. E. Meissner, and O. R. Meissner, Proc. SPIE 6216, 62160O (2006). https://doi.org/10.1117/12.665794

    Article  CAS  Google Scholar 

  10. H. Ichikawa, K. Yamaguchi, and T. Katsumata, Opt. Express 25, 22797 (2017). https://doi.org/10.1364/OE.25.022797

    Article  CAS  Google Scholar 

  11. Y. Li, Zh. Yuan, J. Wang, et al., Opt. Laser Technol. 91, 149 (2017). https://doi.org/10.1016/j.optlastec.2016.12.022

    Article  CAS  Google Scholar 

  12. M. De Vido, M. J. Walsh, S. Kirkpatrick, et al., Opt. Mater. Express 7, 3303 (2017). https://doi.org/10.1364/OME.7.003303

    Article  CAS  Google Scholar 

  13. N. I. Chkhalo, N. N. Salashchenko, and M. V. Zorina, Rev. Sci. Instrum. 86 (1), 016102 (2015). https://doi.org/10.1063/1.4905336

    Article  CAS  Google Scholar 

  14. M. M. Barysheva, Yu. A. Vainer, B. A. Gribkov, et al., Bull. Russ. Acad. Sci.: Phys. 75, 67 (2011). https://doi.org/10.3103/S1062873811010059

    Article  CAS  Google Scholar 

  15. N. I. Chkhalo, S. A. Churin, A. E. Pestov, et al., Opt. Express 22 (17), 20094 (2014). https://doi.org/10.1364/OE.22.020094

    Article  CAS  Google Scholar 

  16. I. G. Zabrodin, B. A. Zakalov, I. A. Kas’kov, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 7, 913 (2013). https://doi.org/10.1134/S1027451013040216

    Article  CAS  Google Scholar 

  17. W. Liao, Y. Dai, X. Xie, et al., Opt. Express 22 (1), 377 (2014). https://doi.org/10.1364/OE.22.000377

    Article  Google Scholar 

  18. J. F. Ellison, G. P. Cox, L. J. Sutton, et al., Proc. SPIE 8860, 88600O (2013). https://doi.org/10.1117/12.2023532

    Article  Google Scholar 

  19. I. I. Kuznetsov, I. B. Mukhin, and O. V. Palashov, Laser Phys. 26 (4), 1088 (2016). https://doi.org/10.1088/1054-660X/26/4/045004

    Article  Google Scholar 

Download references

Funding

This work was carried out using equipment of the Center for Theoretical Physics of the Institute of the Physics of Microstructures, Russian Academy of Sciences, with financial support from the Russian Foundation for Basic Research (project no. 19-02-00631) regarding implementation of the method for creating and manufacturing composites (grant no. 17-02-00640 i) regarding studying the surface morphology upon ion-beam etching, Russian Science Foundation (project no. 18-72-10 134) regarding the testing of active elements in a high-power laser scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Kuznetsov.

Additional information

Translated by Sh. Galyaltdinov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, I.I., Mukhin, I.B., Volkov, M.R. et al. Creation of Composite Optical Elements by the Ion-Beam Surface-Activation Method for Laser Applications. J. Surf. Investig. 14, 1016–1021 (2020). https://doi.org/10.1134/S1027451020050316

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451020050316

Keywords:

Navigation