Skip to main content
Log in

Relaxation in glasses at low temperatures

  • Scientific Summaries
  • Published:
Journal of Experimental and Theoretical Physics Letters Aims and scope Submit manuscript

Abstract

The interaction between tunneling system inherent in amorphous solids is established to be responsible for the universal behavior of their kinetics and thermodynamic properties at low temperature. In this paper, we describe the relaxation mechanism induced by the interaction that falls down as R−3 at large distances. This interaction is either the electrostatic dipole-dipole one or is the elastic one between the point defects (the tunneling system). In the last case, the interaction is due to an indirect interaction induced by acoustic virtual phonon exchange. The relaxation becomes significant at sufficiently low temperature where phonons are substantially frozen out. We show that, in a realistic experimental situation, the measuring field strongly accelerates the interaction-stimulated relaxation. The characteristic temperature and field dependences of the relaxation rate are found when the rate is affected both by the interaction between tunneling systems and by the external field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. W. Anderson, B. I. Halperin, and C. M. Varma, Philos. Mag. 25, 1 (1972); W. A. Phillips, J. Low Temp. Phys. 7, 351 (1972).

    Google Scholar 

  2. L. Bernard, L. Piche, G. Schumacher, and J. Joffrin, J. Low Temp. Phys. 45, 411 (1979); G. Baier and M. V. Schickfus, Phys. Rev. B 38, 9952 (1988).

    Google Scholar 

  3. B. Golding and T. E. Graebner, in Amorphous Solids, Ed. by W. A. Phillips (Springer, Berlin, 1984), Topics in Current Physics, Vol. 24, p. 107.

    Google Scholar 

  4. P. Esquinazi, R. König, and F. Pobell, Z. Phys. B 87, 305 (1992).

    Article  Google Scholar 

  5. S. Rogge, D. Natelson, and D. D. Osheroff, Phys. Rev. Lett. 76, 3136 (1996).

    Article  ADS  Google Scholar 

  6. J. Classen, T. Burkert, C. Enss, and S. Hunklinger, Phys. Rev. Lett. 84, 2176 (2000).

    Article  ADS  Google Scholar 

  7. M. A. Continentino, Phys. Rev. B 22, 6127 (1980); C. C. Yu, Phys. Rev. B 32, 4220 (1985); S. V. Maleev, Sov. Phys. JETP 67, 157 (1988); A. Würger and D. Bodea, Chem. Phys. 296, 301 (2004).

    Article  ADS  Google Scholar 

  8. A. L. Burin and Yu. Kagan, Zh. Éksp. Teor. Fiz. 106, 633 (1994) [JETP 79, 347 (1994)].

    Google Scholar 

  9. S. Hunklinger and A. K. Raychaudchary, Prog. Low Temp. Phys. 9, 267 (1986).

    Google Scholar 

  10. W. Arnold and S. Hunklinger, Solid State Commun. 17, 833 (1975).

    Article  Google Scholar 

  11. J. L. Black and B. I. Halperin, Phys. Rev. B 16, 2819 (1968).

    Google Scholar 

  12. S. Volker, J. Lumin. 36, 251 (1987).

    Google Scholar 

  13. H. Maier, R. Wunderlich, D. Haarer, et al., Phys. Rev. Lett. 74, 5252 (1995).

    Article  ADS  Google Scholar 

  14. K. Fritsch and J. Friedrich, Physica D (Amsterdam) 107, 218 (1997).

    ADS  Google Scholar 

  15. J. E. Grabner and B. Golding, Phys. Rev. B 19, 964 (1979).

    ADS  Google Scholar 

  16. D. J. Salvino, S. Rogge, B. Tigner, and D. D. Osheroff, Phys. Rev. Lett. 73, 268 (1994).

    ADS  Google Scholar 

  17. A. L. Burin, J. Low Temp. Phys. 100, 309 (1995).

    Article  Google Scholar 

  18. C. Enss and S. Hunklinger, Phys. Rev. Lett. 79, 2831 (1997).

    Article  ADS  Google Scholar 

  19. P. Strehlow, C. Enss, and S. Hunklinger, Phys. Rev. Lett. 80, 5361 (1998).

    Article  ADS  Google Scholar 

  20. S. Kettemann, P. Fulde, and P. Strehlow, Phys. Rev. Lett. 83, 4325 (1999).

    Article  ADS  Google Scholar 

  21. P. Strehlow, M. Wohlfahrt, A. G. M. Jansen, et al., Phys. Rev. Lett. 84, 1938 (2000).

    Article  ADS  Google Scholar 

  22. M. Wohlfahrt, P. Strehlow, C. Enss, and S. Hunklinger, Europhys. Lett. 56, 690 (2001).

    Article  Google Scholar 

  23. A. Würger, Phys. Rev. Lett. 88, 075502 (2002).

    Google Scholar 

  24. J. Le Cochec, F. Ladieu, and P. Pari, Phys. Rev. B 66, 064203 (2002).

    Google Scholar 

  25. P. W. Anderson, Phys. Rev. 109, 2041 (1958).

    Google Scholar 

  26. B. D. Laikhtman, Phys. Rev. B 31, 490 (1985).

    ADS  Google Scholar 

  27. I. Ya. Polishchuk, L. A. Maksimov, and A. L. Burin, JETP 79, 634 (1994).

    ADS  Google Scholar 

  28. B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Nauka, Moscow, 1979; Springer, Heidelberg, 1984).

    Google Scholar 

  29. J. J. Freeman and A. C. Anderson, Phys. Rev. B 34, 5684 (1986); A. J. Leggett and C. C. Yu, Comments Condens. Matter Phys. 14, 231 (1989).

    Article  ADS  Google Scholar 

  30. A. L. Burin, D. Natelson, D. D. Osheroff, and Yu. Kagan, in Tunneling Systems in Amorphous and Crystalline Solids, Ed. by P. Esquinazi (Springer, Berlin, 1998), Chap. 5, p. 243.

    Google Scholar 

  31. A. L. Burin, Yu. Kagan, and I. Ya. Polishchuk, Phys. Rev. Lett. 86, 5616 (2001).

    Article  ADS  Google Scholar 

  32. L. S. Levitov, Phys. Rev. Lett. 64, 547 (1990); Ann. Phys. (Leipzig) 8, 697 (1999).

    ADS  MathSciNet  Google Scholar 

  33. A. L. Burin, Yu. Kagan, L. A. Maksimov, and I. Ya. Polishchuk, Phys. Rev. Lett. 80, 2945 (1998).

    Article  ADS  Google Scholar 

  34. A. L. Burin, L. A. Maksimov, and I. Ya. Polishchuk, JETP Lett. 49, 784 (1989).

    ADS  Google Scholar 

  35. R. König, M. A. Ramos, I. Usherov-Marshak, et al., Phys. Rev. B 65, 180201 (2002).

    Google Scholar 

  36. Yu. Kagan and L. A. Maksimov, Zh. Éksp. Teor. Fiz. 87, 348 (1984) [Sov. Phys. JETP 60, 201 (1984)].

    Google Scholar 

  37. E. J. Thompson, G. Lawes, J. M. Parpia, and R. O. Pohl, Phys. Rev. Lett. 84, 4601 (2000).

    Article  ADS  Google Scholar 

  38. F. Ladieu, J. Le Cochec, P. Pari, et al., Phys. Rev. Lett. 90, 205501 (2003); J. Le Cochec and F. Ladieu, Eur. Phys. J. B 32, 13 (2003).

  39. S. Ludwig and D. D. Osheroff, Phys. Rev. Lett. 91, 105501 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Pis’ma v Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 80, No. 7, 2004, pp. 583–592.

Original English Text Copyright © 2004 by Burin, Maksimov, Polishchuk.

This article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burin, A.L., Maksimov, L.A. & Polishchuk, I.Y. Relaxation in glasses at low temperatures. Jetp Lett. 80, 513–522 (2004). https://doi.org/10.1134/1.1839302

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1839302

PACS numbers

Navigation