Skip to main content
Log in

Electrical conductivity and thermoelectric power of liquid tellurium doped with 3d transition metals

  • Electronic and Optical Properties of Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The electrical conductivity and thermoelectric power of liquid tellurium with transition 3d metal impurities were measured in a wide temperature range (from 1700 K to the crystallization temperature) under argon pressure (up to 25 MPa). It is shown that Ti, V, Cr, and Mn impurities decrease the conductivity and slightly increase the thermoelectric power, whereas Fe, Co, Ni, and Cu impurities increase the conductivity and slightly decrease the thermoelectric power. In the region above 1200 K, the thermoelectric power remains virtually constant, whereas the conductivity decreases. The results obtained are interpreted in the context of the model of s-d hybridization. To describe electron scattering in such systems, the Friedel-Anderson procedure is used, based on the ideas about the existence of virtual bound states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Glazov, S. N. Chizhevskaya, and N. N. Glagoleva, Liquid Semiconductors (Nauka, Moscow, 1967; Plenum, New York, 1969).

    Google Scholar 

  2. M. Cutler, Liquid Semiconductors (Academic, New York, 1977).

    Google Scholar 

  3. Liquid Metals, Ed. by R. Evans and D. A. Greenwood (AIP, New York, 1977; Metallurgiya, Moscow, 1980).

    Google Scholar 

  4. R. Barrue and J. C. Perron, Phys. Lett. A 89A, 305 (1982).

    ADS  Google Scholar 

  5. V. Ya. Prokhorenko, B. I. Sokolovskii, and V. A. Alekseev, Phys. Status Solidi B 113, 453 (1982).

    Google Scholar 

  6. J. C. Perron and R. Barrue, Z. Phys. Chem., Neue Folge 157, 623 (1988).

    Google Scholar 

  7. H. Ikemoto, I. Yamamoto, T. Tsuzuki, and H. Endo, J. Non-Cryst. Solids 205–207, 347 (1996).

    Google Scholar 

  8. T. Yamaguchi, H. Ohtani, and F. Yonezawa, J. Non-Cryst. Solids 250, 437 (1999).

    Article  Google Scholar 

  9. S. Takeda, S. Ohno, and S. Tamaki, J. Phys. Soc. Jpn. 40, 113 (1976).

    Google Scholar 

  10. S. Ohno and S. Harada, J. Phys. Soc. Jpn. 49, 188 (1980).

    Google Scholar 

  11. F. Kakinuta and S. Ohno, J. Phys. Soc. Jpn. 50, 1951 (1981).

    Google Scholar 

  12. M. Tagashi, T. Okada, and S. Ohno, J. Phys. Soc. Jpn. 56, 3609 (1987).

    Google Scholar 

  13. A. C. Barnes, D. Laundy, and J. E. Enderby, Philos. Mag. B 55, 497 (1987).

    Google Scholar 

  14. N. F. Mott and R. S. Allgaer, Phys. Status Solidi 21, 343 (1967).

    Google Scholar 

  15. B. Cabane and J. Friedel, J. Phys. (Paris) 32, 813 (1971).

    Google Scholar 

  16. C. Bichara, J.-Y. Raty, and J.-P. Gaspard, J. Non-Cryst. Solids 205, 361 (1996).

    Article  Google Scholar 

  17. N. F. Mott, Philos. Mag. 24, 1 (1971).

    Google Scholar 

  18. J. Friedel, Nuovo Cimento Suppl. 7, 287 (1958).

    Google Scholar 

  19. P. W. Anderson, Phys. Rev. 124, 41 (1961).

    ADS  MathSciNet  Google Scholar 

  20. Yu. Plevachuk and V. Sklyarchuk, Meas. Sci. Technol. 12, 23 (2001).

    Article  ADS  Google Scholar 

  21. S. Ohno, J. Phys. Soc. Jpn. 55, 295 (1986).

    Google Scholar 

  22. A. Animalu, Intermediate Quantum Theory of Crystalline Solids (Prentice Hall, Englewood Cliffs, N.J., 1977; Mir, Moscow, 1981).

    Google Scholar 

  23. J. M. Ziman, Principles of the Theory of Solids, 2nd ed. (Cambridge Univ. Press, London, 1972; Mir, Moscow, 1974).

    Google Scholar 

  24. Y. Katayama, O. Shimomura, and K. Tsuji, J. Non-Cryst. Solids 250, 537 (1999).

    Article  Google Scholar 

  25. Y. Kavakita, M. Yao, and H. Endo, J. Non-Cryst. Solids 250, 447 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 38, No. 12, 2004, pp. 1409–1413.

Original Russian Text Copyright © 2004 by Sklyarchuk, Plevachuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sklyarchuk, V.M., Plevachuk, Y.O. Electrical conductivity and thermoelectric power of liquid tellurium doped with 3d transition metals. Semiconductors 38, 1365–1368 (2004). https://doi.org/10.1134/1.1836052

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1836052

Keywords

Navigation