Skip to main content
Log in

Analysis of the parameters of a submicron dislocation structure in metals subjected to severe plastic deformation

  • Defects, Dislocations, and Physics of Strength
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Equations of dislocation kinetics are used to quantitatively compare the mechanisms of formation and evolution (with deformation) of cellular dislocation structures at moderate strains and of submicron block dislocation structures at high plastic strains. In both cases, the formation of nonuniform dislocation structures is a result of dislocation self-organization, more specifically, the self-organization of statistically random dislocations during the formation of cellular structures and the self-organization of geometrically necessary dislocations (which appear due to the nonuniform character of plastic deformation on the micron scale) during the formation of block structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Zehebetbauer and V. Seumer, Acta Metall. Mater. 41(2), 577 (1993).

    Google Scholar 

  2. D. A. Hughes and N. Hansen, Acta Metall. Mater. 48(11), 2958 (2000).

    Google Scholar 

  3. P. J. Apps, J. R. Bowen, and P. B. Prangnell, Acta Mater. 51(10), 2811 (2003).

    Google Scholar 

  4. D. A. Hughes, Q. Liu, D. C. Chrzan, and N. Hansen, Acta Metall. Mater. 45(1), 105 (1997).

    Google Scholar 

  5. D. A. Hughes, Scr. Mater. 47(10), 697 (2002).

    Article  Google Scholar 

  6. Y. Estrin, L. S. Toth, A. Molinari, and Y. Brechet, Acta Mater. 46(15), 5509 (1998).

    Article  Google Scholar 

  7. M. Seefeldt, Rev. Adv. Mater. Sci. 2(1), 44 (2001).

    Google Scholar 

  8. N. Hansen and D. Kuhlmann-Wilsdorf, Mater. Sci. Eng. 81(1/2), 141 (1986).

    Google Scholar 

  9. G. A. Malygin, Fiz. Tverd. Tela (St. Petersburg) 43(10), 1832 (2001) [Phys. Solid State 43, 1909 (2001)].

    Google Scholar 

  10. G. A. Malygin, Fiz. Tverd. Tela (St. Petersburg) 44(11), 1979 (2002) [Phys. Solid State 44, 2072 (2002)].

    Google Scholar 

  11. V. V. Rybin, Large Plastic Deformations and Fracture of Metals (Metallurgiya, Moscow, 1986) [in Russian].

    Google Scholar 

  12. A. P. Zhilyaev, G. V. Nurislamova, B. K. Kim, et al., Acta Mater. 51(3), 753 (2003).

    Article  Google Scholar 

  13. N. A. Koneva and É. V. Kozlov, Izv. Vyssh. Uchebn. Zaved., Fiz. 33(2), 89 (1990).

    Google Scholar 

  14. A. A. Popov, I. Yu. Pyshmintsev, R. Z. Valiev, et al., Scr. Metall. Mater. 37(7), 1089 (1997).

    Google Scholar 

  15. G. A. Malygin, Usp. Fiz. Nauk 169(6), 979 (1999) [Phys. Usp. 42, 887 (1999)].

    Google Scholar 

  16. G. A. Malygin, in Problems in Materials Technology (Prometei, St. Petersburg, 2003), No. 1(33), p. 278 [in Russian].

    Google Scholar 

  17. U. F. Kocks, J. Eng. Mater. Technol. 98(1), 76 (1976).

    Google Scholar 

  18. F. Prinz and A. S. Argon, Phys. Status Solidi A 57(2), 741 (1980).

    Google Scholar 

  19. T. Tabata, S. Yamanaka, and H. Fujita, Acta Metall. 26(3), 405 (1978).

    Google Scholar 

  20. A. S. Rubtsov and V. V. Rybin, Fiz. Met. Metalloved. 44(3), 611 (1977).

    Google Scholar 

  21. I. A. Gindin, Ya. D. Starodubtsev, and V. K. Aksenov, Metallofizika (Kiev) 8(12), 49 (1980).

    Google Scholar 

  22. L. A. Kornienko, G. P. Bakach, and E. F. Dudarev, in Plastic Deformation of Alloys (Tomsk. Gos. Univ., Tomsk, 1986), p. 219 [in Russian].

    Google Scholar 

  23. J. S. Stölken and A. G. Evans, Acta Mater. 46(14), 5109 (1998).

    Article  Google Scholar 

  24. G. A. Malygin, S. V. Zherebtsov, and S. Yu. Mironov, in Problems in Materials Technology (Prometei, St. Petersburg, 2003), No. 1(33), p. 175 [in Russian].

    Google Scholar 

  25. G. Langford and M. Cohen, Metall. Trans. A 6(4), 901 (1975).

    Google Scholar 

  26. A. Kelly, Acta Crystallogr. 7(8/9), 554 (1954).

    Google Scholar 

  27. N. Yu. Zolotorevskii, Yu. F. Titovets, and N. Yu. Ermakova, in Problems in Materials Technology (Prometei, St. Petersburg, 2002), No. 1(29), p. 290 [in Russian].

    Google Scholar 

  28. Q. Liu, X. Huang, D. J. Lloyd, and N. Hansen, Acta Mater. 50(15), 3789 (2002).

    Article  Google Scholar 

  29. L. E. Popov, V. S. Kobytev, and T. A. Kovalevskaya, Plastic Deformation of Alloys (Tomsk. Gos. Univ., Tomsk, 1984) [in Russian].

    Google Scholar 

  30. G. A. Malygin, Fiz. Tverd. Tela (St. Petersburg) 34(9), 2882 (1992) [Sov. Phys. Solid State 34, 1543 (1992)].

    Google Scholar 

  31. R. Berner and G. Kronmüller, Plastische Verformung von Einkristallen (Springer, Berlin, 1965; Mir, Moscow, 1969).

    Google Scholar 

  32. A. Belyakov, T. Sakai, H. Miura, and K. Tsuzaki, Philos. Mag. A 81(11), 2629 (2001).

    Google Scholar 

  33. M. M. Myshlyaev and S. Yu. Mironov, Fiz. Tverd. Tela (St. Petersburg) 44(4), 711 (2002) [Phys. Solid State 44, 738 (2002)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 46, No. 11, 2004, pp. 1968–1974.

Original Russian Text Copyright © 2004 by Malygin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malygin, G.A. Analysis of the parameters of a submicron dislocation structure in metals subjected to severe plastic deformation. Phys. Solid State 46, 2035–2041 (2004). https://doi.org/10.1134/1.1825546

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1825546

Keywords

Navigation