Skip to main content
Log in

The majorana neutrinoless double-beta decay experiment

  • Double-Beta Decay and Rare Processes
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The proposed Majorana double-beta decay experiment is based on an array of segmented intrinsic Ge detectors with a total mass of 500 kg of Ge isotopically enriched to 86% in 76Ge. A discussion is given of background reduction by material selection, detector segmentation, pulse shape analysis, and electroformation of copper parts and granularity. Predictions of the experimental sensitivity are given. For an experimental running time of 10 years over the construction and operation oft he Majorana setup, a sensitivity of T 1/2 ∼4×1027 yr is predicted. This corresponds to 〈mν〉∼0.003−0.004 eV according to recent QRPA and RQRPA matrix element calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Pascoli and S. T. Petcov, Phys. Lett. B 544, 239 (2002).

    ADS  Google Scholar 

  2. K. Cheung et al., Phys. Lett. B 562, 97 (2003).

    ADS  Google Scholar 

  3. J. N. Bahcall, M. C. Gonzales-Garcia, and C. Pena-Garay, J. High Energy Phys. 07, 054 (2002); Phys. Rev. C 66, 035802 (2002).

    Google Scholar 

  4. F. T. Avignone III and G. S. King III, in Proceedings of the 4th International Workshop on Identification of Dark Matter, York, UK, 2002, Ed. by N. J. Spooner and V. Kudryavtsev (World Sci., Singapore, 2003), p. 553.

    Google Scholar 

  5. L. Baudis et al., Phys. Rev. Lett. 83, 41 (1999); A small subgroup has published a claim of discovery. See: H. V. Klapdor-Kleingrothaus et al., Mod. Phys. Lett. 110 (1), 57 (2002).

    Article  ADS  Google Scholar 

  6. C. E. Aalseth et al., Phys. Rev. D 65, 092007 (2002).

  7. R. L. Brodzinski et al., J. Radioanal. Nucl. Chem. 193, 61 (1995).

    Google Scholar 

  8. F. T. Avignone III et al., Nucl. Phys. B (Proc. Suppl.) 28, 280 (1992).

    Article  ADS  Google Scholar 

  9. P. Vogel and M. R. Zirnbauer, Phys. Rev. Lett. 57, 3148 (1986).

    Article  ADS  Google Scholar 

  10. W. C. Haxton and G. F. Stephenson, Jr., Prog. Part. Nucl. Phys. 12, 409 (1984).

    Article  ADS  Google Scholar 

  11. T. Tomoda, A. Faessler, K. W. Schmid, and F. Grümmer, Nucl. Phys. A 452, 591 (1986).

    ADS  Google Scholar 

  12. K. Muto, E. Bender, and H. V. Klapdor-Kleingrothaus, Z. Phys. A 334, 187 (1989).

    Google Scholar 

  13. A. Staudt, K. Muto, and H. V. Klapdor-Kleingrothaus, Europhys. Lett. 13, 31 (1990).

    ADS  Google Scholar 

  14. T. Tomoda, Rep. Prog. Phys. 54, 53 (1991).

    Article  ADS  Google Scholar 

  15. J. Suhonen, O. Civitarese, and A. Faessler, Nucl. Phys. A 543, 645 (1992).

    ADS  Google Scholar 

  16. E. Caurier, F. Nowacki, A. Poves, and J. Retamosa, Phys. Rev. Lett. 77, 1954 (1996).

    Article  ADS  Google Scholar 

  17. G. Pantis, F. Simkovic, J. D. Vergados, and A. Faessler, Phys. Rev. C 53, 695 (1996).

    Article  ADS  Google Scholar 

  18. F. Simkovic, J. Schwinger, M. Veselsky, et al., Phys. Lett. B 393, 267 (1997).

    ADS  Google Scholar 

  19. M. Aunola and J. Suhonen, Nucl. Phys. A 643, 207 (1998).

    ADS  Google Scholar 

  20. A. Faessler and F. Simkovic, J. Phys. G 24, 2139 (1998).

    ADS  Google Scholar 

  21. C. Barbero, F. Krmpotic, A. Mariano, and D. Tadic, Nucl. Phys. A 650, 485 (1999).

    ADS  Google Scholar 

  22. F. Simkovic, G. Pantis, J. D. Vergados, and A. Faessler, Phys. Rev. C 60, 055502 (1999).

    Google Scholar 

  23. S. Stoica and H. V. Klapdor-Kleingrothaus, Eur. Phys. J. A 9, 345 (2000).

    Article  ADS  Google Scholar 

  24. J. Suhonen, Phys. Lett. B 477, 99 (2000).

    ADS  Google Scholar 

  25. A. Bobyk, W. A. Kaminski, and F. Šimkovic, Phys. Rev. C 63, 051301(R) (2001).

  26. S. Stoica and H. V. Klapdor-Kleingrothaus, Nucl. Phys. A 694, 269 (2001).

    ADS  Google Scholar 

  27. S. Stoica and H. V. Klapdor-Kleingrothaus, Phys. Rev. C 63, 064304 (2001).

    Google Scholar 

  28. V. A. Rodin, A. Faessler, F. Šimkovic, and P. Vogel, Phys. Rev. C 68, 044302 (2003).

    Google Scholar 

  29. R. Machleidt, Adv. Nucl. Phys. 19, 189 (1989).

    Google Scholar 

  30. R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C 51, 38 (1995).

    Article  ADS  Google Scholar 

  31. V. G. J. Stoks, R. A. M. Klomp, C. P. F. Terheggen, and J. J. de Stewart, Phys. Rev. C 49, 2950 (1994).

    Article  ADS  Google Scholar 

  32. O. Civitarese and J. Suhonen, nucl-th/0208005.

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Yadernaya Fizika, Vol. 67, No. 11, 2004, pp. 2025–2032.

Original English Text Copyright © 2004 by Aalseth, Anderson, Arthur, Avignone III, Baktash, Ball, Barabash, Brodzinski, Brudanin, Bugg, Champagne, Chan, Cianciolo, Collar, Creswick, Doe, Dunham, Easterday, Efremenko, Egorov, Ejiri, Elliott, Ely, Fallon, Farach, Gaitskell, Gehman, Grzywacz, Hazma, Hime, Hossbach, Jordan, Kazkaz, Kephart, King III, Kochetov, Konovalov, Kouzes, Lesko, Macchiavelli, Miley, Mills, Nomachi, Palms, Pitts, Poon, Radford, Reeves, Robertson, Rohm, Rykaczewski, Saborov, Sandukovsky, Shawley, Stekhanov, Tornow, van de Water, Vetter, Warner, Webb, Wilkerson, Wouters, Young, Yumatov.

This article was submitted by the authors in English.

The authors represent the Majorana Collaboration

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aalseth, C.E., Anderson, D., Arthur, R. et al. The majorana neutrinoless double-beta decay experiment. Phys. Atom. Nuclei 67, 2002–2010 (2004). https://doi.org/10.1134/1.1825519

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1825519

Keywords

Navigation