Skip to main content
Log in

The mesoscopic chiral metal-insulator transition

  • Condensed Matter
  • Published:
Journal of Experimental and Theoretical Physics Letters Aims and scope Submit manuscript

Abstract

Sharp localization transitions of chiral edge states in disordered quantum wires subject to a strong magnetic field are shown to be driven by crossovers from two-to one-dimensional localization of bulk states. As a result, the two-terminal conductance is found to exhibit discontinuous transitions at zero temperature between exactly integer plateau values and zero, reminiscent of first-order phase transitions. We discuss the corresponding phase diagram. The spin of the electrons is shown to result in a multitude of phases when the spin degeneracy is raised by the Zeeman energy. The width of conductance plateaus is found to depend sensitively on the spin flip rate 1/τs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).

    Article  ADS  Google Scholar 

  2. R. B. Laughlin, Phys. Rev. B 23, 5632 (1981).

    Article  ADS  Google Scholar 

  3. T. Ando and H. Aoki, Solid State Commun. 38, 1079 (1981); R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).

    Google Scholar 

  4. B. I. Halperin, Phys. Rev. B 25, 2185 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  5. J. T. Chalker and G. J. Daniell, Phys. Rev. Lett. 61, 593 (1988); B. Huckestein and B. Kramer, Phys. Rev. Lett. 64, 1437 (1990).

    Article  ADS  Google Scholar 

  6. B. Huckestein, Rev. Mod. Phys. 67, 357 (1995).

    Article  ADS  Google Scholar 

  7. A. G. Galstyan and M. E. Raikh, Phys. Rev. B 56, 1422 (1997); D. P. Arovas, M. Janssen, and B. Shapiro, Phys. Rev. B 56, 4751 (1997).

    Article  ADS  Google Scholar 

  8. H. P. Wei et al., Phys. Rev. Lett. 61, 1294 (1988); S. Koch et al., Phys. Rev. Lett. 67, 883 (1991); L. W. Engel et al., Phys. Rev. Lett. 71, 2638 (1993); M. Furlan, Phys. Rev. B 57, 14818 (1998); F. Hohls et al., Phys. Rev. Lett. 88, 036802 (2002).

    ADS  Google Scholar 

  9. R. J. Haug and K. von Klitzing, Europhys. Lett. 10, 489 (1989).

    ADS  Google Scholar 

  10. G. Timp et al., Phys. Rev. Lett. 59, 732 (1987); Phys. Rev. Lett. 63, 2268 (1989).

    Article  ADS  Google Scholar 

  11. T. Ando, Phys. Rev. B 49, 4679 (1994).

    Article  ADS  Google Scholar 

  12. B. J. van Wees, L. P. Kouwenhoven, E. M. M. Willems, et al., Phys. Rev. B 43, 12431 (1991).

  13. B. I. Shklovskii, Pis’ma Zh. Éksp. Teor. Fiz. 36, 43 (1982) [JETP Lett. 36, 51 (1982)]; A. V. Khaetskii and B. I. Shklovskii, Zh. Éksp. Teor. Fiz. 85, 721 (1983) [Sov. Phys. JETP 58, 421 (1983)]; M. E. Raikh and T. V. Shahbazyan, Phys. Rev. B 51, 9682 (1995).

    Google Scholar 

  14. T. Ohtsuki and Y. Ono, Solid State Commun. 65, 403 (1988); Solid State Commun. 68, 787 (1988); Y. Ono, T. Ohtsuki, and B. Kramer, J. Phys. Soc. Jpn. 58, 1705 (1989); T. Ohtsuki and Y. Ono, J. Phys. Soc. Jpn. 58, 956 (1989); T. Ando, Phys. Rev. B 42, 5626 (1990).

    Article  Google Scholar 

  15. R. G. Mani and K. von Klitzing, Phys. Rev. B 46, 9877 (1992); R. G. Mani, K. von Klitzing, and K. Ploog, Phys. Rev. B 51, 2584 (1995).

    Article  ADS  Google Scholar 

  16. P. G. N. de Vegvar, A. M. Chang, G. Timp, et al., Phys. Rev. B 36, 9366 (1987).

    ADS  Google Scholar 

  17. M. L. Roukes, A. Scherer, S. J. Allen, et al., Phys. Rev. Lett. 59, 3011 (1987).

    Article  ADS  Google Scholar 

  18. J. T. Chalker and A. Dohmen, Phys. Rev. Lett. 75, 4496 (1995).

    Article  ADS  Google Scholar 

  19. E. Abrahams, P. W. Anderson, D. C. Licciardello, et al., Phys. Rev. Lett. 42, 673 (1979).

    Article  ADS  Google Scholar 

  20. F. Wegner, Z. Phys. B 36, 1209 (1979); Nucl. Phys. B 316, 663 (1989).

    Google Scholar 

  21. S. Hikami, Prog. Theor. Phys. 64, 1466 (1980).

    ADS  MATH  MathSciNet  Google Scholar 

  22. K. B. Efetov, A. I. Larkin, and D. E. Khmel’nitskii, Zh. Éksp. Teor. Fiz. 79, 1120 (1980) [Sov. Phys. JETP 52, 568 (1980)].

    MathSciNet  Google Scholar 

  23. A. MacKinnon and B. Kramer, Phys. Rev. Lett. 47, 1546 (1981); Z. Phys. B 53, 1 (1983).

    Article  ADS  Google Scholar 

  24. B. Kramer and A. MacKinnon, Rep. Prog. Phys. 56, 1469 (1993).

    Article  ADS  Google Scholar 

  25. T. Ando and Y. Uemura, J. Phys. Soc. Jpn. 36, 959 (1974); T. Ando, J. Phys. Soc. Jpn. 36, 1521 (1974); J. Phys. Soc. Jpn. 37, 622 (1974).

    Google Scholar 

  26. B. Huckestein, Phys. Rev. Lett. 84, 3141 (2000).

    ADS  Google Scholar 

  27. K. B. Efetov, Supersymmetry in Disorder and Chaos (Cambridge Univ. Press, Cambridge, 1997).

    Google Scholar 

  28. K. B. Efetov and A. I. Larkin, Zh. Éksp. Teor. Fiz. 85, 764 (1983) [Sov. Phys. JETP 58, 444 (1983)].

    Google Scholar 

  29. O. N. Dorokhov, Pis’ma Zh. Éksp. Teor. Fiz. 36, 259 (1982) [JETP Lett. 36, 318 (1982)]; Zh. Éksp. Teor. Fiz. 85, 1040 (1983) [Sov. Phys. JETP 58, 606 (1983)]; Solid State Commun. 51, 381 (1984).

    Google Scholar 

  30. S. Kettemann, J. Phys. Soc. Jpn. (Suppl. A) 72, 197 (2003); Phys. Rev. B 69, 035339 (2004).

    Google Scholar 

  31. V. Kalmeyer, D. Wei, D. P. Arovas, and S.-C. Zhang, Phys. Rev. B 48, 11095 (1993).

    Google Scholar 

  32. S. Kettemann, Phys. Rev. B 62, R13282 (2000); S. Kettemann and R. Mazzarello, Phys. Rev. B 65, 085318 (2002).

  33. R. M. Corless et al., Adv. Comput. Math. 5, 329 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  34. A. M. M. Pruisken, in The Quantum Hall Effect, Ed. by R. E. Prange and S. M. Girvin (Springer, New York, 1990).

    Google Scholar 

  35. J. B. Pendry, A. MacKinnon, and P. J. Roberts, Proc. R. Soc. London, Ser. A 437, 67 (1992).

    ADS  MathSciNet  Google Scholar 

  36. S. Komiyama, O. Astafiev, and T. Machida, Physica E (Amsterdam) 20, 43 (2003).

    ADS  Google Scholar 

  37. K. Takashima et al., Physica E (Amsterdam) 20, 160 (2003).

    ADS  Google Scholar 

  38. F. F. Fang and P. J. Stiles, Phys. Rev. 174, 823 (1968).

    Article  ADS  Google Scholar 

  39. C. L. Kane and M. P. A. Fisher, in Perspectives in Quantum Hall Effects, Ed. by S. Das Sarma and A. Pinczuk (Wiley, New York, 1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Pis’ma v Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 80, No. 4, 2004, pp. 316–320.

Original English Text Copyright © 2004 by Kettemann, Kramer, Ohtsuki.

This article was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kettemann, S., Kramer, B. & Ohtsuki, T. The mesoscopic chiral metal-insulator transition. Jetp Lett. 80, 285–289 (2004). https://doi.org/10.1134/1.1813688

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1813688

PACS numbers

Navigation