Skip to main content
Log in

Auger-spectroscopic appearance of electron correlation at the Fermi surface of graphite

  • Metals and Superconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

It is shown that, in Auger-electron spectra of three-dimensional semimetal graphite and two-dimensional graphite (a zero band-gap semiconductor), an energy gap should be observed between the thresholds (edges) of the forward and inverse processes (threshold gap). In the one-electron approximation, this gap is zero, since the threshold for the Auger spectrum of the forward process is the minimum hole energy in the valence band, while the threshold for the spectrum of the inverse process is the minimum energy of conduction electrons. Inclusion of the electron correlation at the Fermi surface within the quantum-chemical approximation of a single open electron shell for multiplet structures of the restricted Hartree-Fock method makes it possible to determine the threshold gap as 1.5 eV for a 48-atom cyclic model of three-dimensional graphite and as 2.0 eV for a 24-atom model of two-dimensional graphite. The threshold gap does not contain the Fermi energy, in contrast to the Auger spectrum thresholds, where \(\frac{1}{2}(4.0 eV - \varepsilon _F )\) for the forward Auger spectrum (holes) and \(\frac{1}{2}( - 1.1 eV + \varepsilon _F )\) for the inverse spectrum (conduction electrons), the sum of which gives this gap. The results of calculations for the forward Auger spectra of three-dimensional graphite (including the conclusion that electron correlation of holes in the top valence bands is weak in the Auger process) are shown to agree with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Calliari, G. Speranza, J. C. Lascovich, and A. Santoni, Surf. Sci. 501(3), 253 (2002).

    Article  Google Scholar 

  2. F. R. McFeely, S. P. Kowalczyk, L. Ley, R. G. Cavell, R. A. Pollak, and D. A. Shirley, Phys. Rev. B 9(12), 5268 (1974).

    Article  ADS  Google Scholar 

  3. P. Skytt, P. Glans, D. C. Mancini, J.-H. Guo, N. Wassdahl, J. Nordgren, and Y. Ma, Phys. Rev. B 50(15), 10457 (1994).

    Google Scholar 

  4. J. E. Houston, J. W. Rogers, Jr., R. R. Rye, F. L. Hutson, and D. E. Ramaker, Phys. Rev. B 34(2), 1215 (1986).

    Article  ADS  Google Scholar 

  5. J. A. Pople, Nobel Prize Lecture (Stockholm, 1998); Usp. Fiz. Nauk 172 (3), 349 (2002).

  6. S. S. Moliver, Fiz. Tverd. Tela (St. Petersburg) 42(8), 1518 (2000) [Phys. Solid State 42, 1561 (2000)].

    Google Scholar 

  7. S. S. Moliver, Fiz. Tverd. Tela (St. Petersburg) 41(3), 404 (1999) [Phys. Solid State 41, 362 (1999)].

    Google Scholar 

  8. S. S. Moliver and Yu. F. Biryulin, Fiz. Tverd. Tela (St. Petersburg) 43(5), 944 (2001) [Phys. Solid State 43, 982 (2001)].

    Google Scholar 

  9. S. S. Moliver, Doctoral Dissertation (Ul’yanovsk State Univ., Ul’yanovsk, 2001).

  10. M. S. Dresselhaus, G. Dresselhaus, K. Sugihara, I. L. Spain, and H. A. Goldberg, Graphite Fibers and Filaments (Springer, Berlin, 1988).

    Google Scholar 

  11. A. Shluger and E. Stefanovich, Phys. Rev. B 42(15), 9664 (1990).

    Article  ADS  Google Scholar 

  12. M. Cini and C. Verdozzi, J. Phys.: Condens. Matter 1(40), 7457 (1989).

    Article  ADS  Google Scholar 

  13. C. Verdozzi, M. Cini, J. A. Evans, R. J. Cole, A. D. Laine, P. S. Fowles, L. Duo, and P. Weightman, Europhys. Lett. 16(8), 743 (1991).

    ADS  Google Scholar 

  14. G. A. Zawatzky and A. Lanselink, Phys. Rev. B 21(5), 1790 (1980).

    ADS  Google Scholar 

  15. W. Nolting, G. Geipel, and K. Ertl, Phys. Rev. B 45(11), 5790 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 46, No. 9, 2004, pp. 1537–1543.

Original Russian Text Copyright © 2004 by Moliver.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moliver, S.S. Auger-spectroscopic appearance of electron correlation at the Fermi surface of graphite. Phys. Solid State 46, 1583–1590 (2004). https://doi.org/10.1134/1.1799171

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1799171

Keywords

Navigation