Skip to main content
Log in

Special features of radiation-defect annealing in silicon p-n structures: The role of Fe impurity atoms

  • Semiconductor Structures, Interfaces, and Surfaces
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Deep-level transient spectroscopy is used to study the formation of complexes that consist of a radiation defect and a residual impurity atom in silicon. It is established that heat treatment of the diffused Si p +-n junctions irradiated with fast electrons lead to the activation of a residual Fe impurity and the formation of the FeVO (E 0.36 trap) and FeV 2 (H 0.18 trap) complexes. The formation of these traps is accompanied by the early (100–175°C) stage of annealing of the main vacancy-related radiation defects: the A centers (VO) and divacancies (V 2). The observed complexes are electrically active and introduce new electron (E 0.36: E e t =E c -0.365 eV, σ n =6.8×10−15 cm2) and hole (H 0.18: E h t =E v +0.184 eV, σ p =3.0×10−15 cm2) levels into the silicon band gap and have a high thermal stability. It is believed that the complex FeVO corresponds to the previously observed and unidentified defects that have an ionization energy of E e t =E c −(0.34–0.37) eV and appear as a result of heat treatment of irradiated diffused Si p +-n junctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. O. Kolbensen, H. Cerva, and G. Zoth, Solid State Phenom. 76–77, 1 (2001).

    Google Scholar 

  2. A. A. Istratov and E. R. Weber, Appl. Phys. A 66, 123 (1998).

    Article  ADS  Google Scholar 

  3. A. A. Istratov, H. Hieslmair, and E. R. Weber, Appl. Phys. 70, 489 (2000).

    Google Scholar 

  4. G. D. Watkins and J. W. Corbett, Phys. Rev. 121, 1001 (1961).

    Article  ADS  Google Scholar 

  5. J. W. Corbett, G. D. Watkins, R. M. Chrenko, and R. S. McDonald, Phys. Rev. 121, 1051 (1961).

    Article  Google Scholar 

  6. G. D. Watkins and J. W. Corbett, Phys. Rev. A 138, 543 (1965).

    ADS  Google Scholar 

  7. L. J. Cheng, J. C. Corelli, J. W. Corbett, and G. D. Watkins, Phys. Rev. 152, 761 (1966).

    Article  ADS  Google Scholar 

  8. J. W. Walker and C. T. Sah, Phys. Rev. B 7, 4587 (1973).

    ADS  Google Scholar 

  9. L. C. Kimerling, Inst. Phys. Conf. Ser., No. 31, 221 (1977).

  10. S. D. Brotherton and P. J. Bradley, Appl. Phys. 53, 5720 (1982).

    Google Scholar 

  11. C. E. Barnes, J. Electron. Mater. 8, 437 (1979).

    ADS  Google Scholar 

  12. L. F. Makarenko, V. P. Markevich, L. I. Murin, and V. D. Tkachev, Dokl. Akad. Nauk BSSR, No. 11, 988 (1981).

  13. I. F. Medvedeva, L. F. Makarenko, V. P. Markevich, and L. I. Murin, Vesti Akad. Nauk Beloruss. SSR, Ser. Fiz.-Mat. Nauk, No. 3, 19 (1991).

  14. L. S. Berman and V. B. Shuman, Fiz. Tekh. Poluprovodn. (Leningrad) 10, 1755 (1976) [Sov. Phys. Semicond. 10, 1043 (1976)].

    Google Scholar 

  15. P. V. Kuchinskii, V. M. Lomako, and L. N. Shakhlevich, Pis’ma Zh. Éksp. Teor. Fiz. 45, 350 (1987) [JETP Lett. 45, 445 (1987)].

    Google Scholar 

  16. Z. You, M. Gong, J. Chen, and J. W. Corbett, J. Appl. Phys. 63, 324 (1988).

    Article  ADS  Google Scholar 

  17. B. A. Komarov, I. F. Medvedeva, L. I. Murin, et al., in Proceedings of IV International Conference on Interaction of Radiation with Solids (Minsk, 2001), p. 161.

  18. G. Ferenczi, J. Boda, and T. Pavelka, Phys. Status Solidi A 94, K119 (1986).

    Google Scholar 

  19. L. W. Song, B. W. Benson, and G. D. Watkins, Appl. Phys. Lett. 51, 1155 (1987).

    ADS  Google Scholar 

  20. L. I. Murin, Phys. Status Solidi A 101, K107 (1987).

    ADS  Google Scholar 

  21. P. Pellegrimo, P. Levegue, J. Lalita, et al., Phys. Rev. B 64, 195211 (2001).

  22. B. A. Komarov, V. P. Markevich, L. I. Murin, and T. Sekiguchi, in Proceedings of 23rd International Conference on Physics of Semiconductors, Ed. by M. Scheffler and R. Zimmermann (World Sci., Singapore, 1996), p. 2593.

    Google Scholar 

  23. I. F. Medvedeva, L. I. Murin, V. P. Markevich, and B. A. Komarov, Vopr. At. Nauki Tekh., Ser.: Radiats. Materialoved. 79(2), 48 (2001).

    Google Scholar 

  24. B. A. Komarov, Vopr. At. Nauki Tekh., Ser.: Radiats. Materialoved. 79(2), 43 (2001).

    Google Scholar 

  25. A. A. Zolotukhin, A. K. Kovalenko, and L. S. Milevskii, Fiz. Tverd. Tela (Leningrad) 13, 3119 (1971) [Sov. Phys. Solid State 13, 2621 (1971)].

    Google Scholar 

  26. A. A. Lebedev and B. M. Urunbaev, Fiz. Tekh. Poluprovodn. (Leningrad) 15, 612 (1981) [Sov. Phys. Semicond. 15, 350 (1981)].

    Google Scholar 

  27. K. P. Abdurakhmanov, B. A. Kotov, J. Kreissl, et al., Fiz. Tekh. Poluprovodn. (Leningrad) 19, 349 (1985) [Sov. Phys. Semicond. 19, 218 (1985)].

    Google Scholar 

  28. S. H. Muller, G. M. Tuynman, E. G. Sieverts, and C. A. Ammerlaan, Phys. Rev. B 25, 25 (1982).

    Article  ADS  Google Scholar 

  29. A. V. Vasil’ev, S. A. Smagulova, and L. S. Smirnov, Fiz. Tekh. Poluprovodn. (Leningrad) 20, 561 (1986) [Sov. Phys. Semicond. 20, 354 (1986)].

    Google Scholar 

  30. V. P. Markevich, A. R. Peaker, S. B. Lastovskii, et al., J. Phys.: Condens. Matter 15, S2779 (2003).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 38, No. 9, 2004, pp. 1079–1083.

Original Russian Text Copyright © 2004 by Komarov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komarov, B.A. Special features of radiation-defect annealing in silicon p-n structures: The role of Fe impurity atoms. Semiconductors 38, 1041–1046 (2004). https://doi.org/10.1134/1.1797482

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1797482

Keywords

Navigation