Skip to main content
Log in

Stoichiometric synthesis of fullerene compounds with lithium and sodium and analysis of their IR and EPR spectra

  • Fullerenes and Atomic Clusters
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A modified method is proposed for preparing fullerene compounds with alkali metals in a solution. The compounds synthesized have the general formula Me n C60(THF)x, where Me = Li or Na; n=1–4, 6, 8, or 12; and THF = tetrahydrofuran. The use of preliminarily synthesized additives MeC10H8 makes it possible to prepare fullerene compounds with an exact stoichiometric ratio between C n60 and Me +. The IR and EPR spectra of the compounds prepared are analyzed and compared with the spectra of their analogs available in the literature. The intramolecular modes T u (1)-T u (4) for the C n60 anion are assigned. The splitting of the T u (1) mode into a doublet at room temperature for Me n C60(THF)x (n=1, 2, 4) compounds indicates that the fullerene anion has a distorted structure. An increase in the intensity of the T u (2) mode, a noticeable shift of the T u (4) mode toward the long-wavelength range, and an anomalous increase in the intensity of the latter mode for the Li3C60(THF)x complex suggest that, in the fullerene anion, the coupling of vibrational modes occurs through the charge-phonon mechanism. The measured EPR spectra of lithium-and sodium-containing fullerene compounds are characteristic of C 60 anions. The g factors for these compounds are almost identical and do not depend on temperature. The g factor for the C n60 anion depends on the nature of the metal and differs from the g factor for the C 60 anion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Paul, K.-C. Kim, D. Sun, P. Boyd, and C. Reed, J. Am. Chem. Soc. 124(16), 4394 (2002).

    Article  Google Scholar 

  2. S. Yang, C. Pettietle, J. Conceicao, O. Cheshnovsky, and R. Smalley, Chem. Phys. Lett. 139, 233 (1987).

    ADS  Google Scholar 

  3. P. Boyd, P. Bhyrappa, P. Paul, J. Stinchcombe, R. Bolskar, Y. Sun, and C. Reed, J. Am. Chem. Soc. 117(10), 2907 (1995).

    Article  Google Scholar 

  4. U. Zimmermann, N. Malinowski, A. Burkhardt, and T. P. Martin, Carbon 33(7), 995 (1995).

    Article  Google Scholar 

  5. L. Cristofolini, M. Ricco, and R. Renzi, Phys. Rev. B 59(3), 8343 (1999).

    Article  ADS  Google Scholar 

  6. X. H. Chen, S. Taga, and Y. Iwasa, Phys. Rev. B 60(6), 4351 (1999).

    Article  ADS  Google Scholar 

  7. J. P. Hate, T. J. Dennis, H. W. Kroto, R. Taylor, A. W. Allaf, S. Balm, and D. R. Walton, J. Chem. Soc., Chem. Commun. 412 (1991).

  8. M. J. Rice and Hau-Yong Choi, Phys. Rev. B 45(17), 10173 (1992).

  9. L. R. Narasimhan, D. N. Stoneback, A. F. Hebard, R. C. Haddon, and C. K. N. Patel, Phys. Rev. B 46(4), 2591 (1992).

    Article  ADS  Google Scholar 

  10. A. Penicaud, A. Perez-Benitez, R. Gleason, V. E. Munoz, and P. R. Escudero, J. Am. Chem. Soc. 115(22), 10392 (1993).

    Google Scholar 

  11. P. Paul, Z. Xie, R. Bau, P. D. W. Boyd, and C. A. Reed, J. Am. Chem. Soc. 116(9), 4145 (1994).

    Article  Google Scholar 

  12. P. Dahlke and M. Rosseinsky, Chem. Mater. 14(3), 1285 (2002).

    Article  Google Scholar 

  13. T. Pichler, R. Winkler, and H. Kuzmany, Phys. Rev. B 49(22), 15879 (1994).

  14. K. Kamaras, D. B. Tanner, L. Forro, M. C. Martin, L. Mihaly, H. Klos, and B. Gotshy, J. Supercond. 8, 621 (1995).

    Google Scholar 

  15. S. P. Solodovnikov, Izv. Akad. Nauk, Ser. Khim. 2190 (1995).

  16. Y. Iwasa, K. Tanone, T. Mitani, A. Izuoka, T. Sugawara, and T. Yagi, J. Chem. Soc., Chem. Commun. 1411 (1998).

  17. P.-M. Allemand, G. Szdanov, A. Kock, K. Khemani, F. Wudl, Y. Rubin, M. Alvarez, S. Anz, and R. Whetten, J. Am. Chem. Soc. 113(7), 2780 (1991).

    Article  Google Scholar 

  18. M. Rosseinsky, J. Mater. Chem. 5, 1497 (1995).

    Article  Google Scholar 

  19. S. P. Solodovnikov, Izv. Akad. Nauk, Ser. Khim. 669 (1998).

  20. J. Chen, Zu-Eu Huang, R.-F. Cai, Q.-F. Shao, S.-M. Chen, and H.-J. Ye, J. Chem. Soc. Chem. Commun. 2177 (1994).

  21. P. C. Trulove, R. T. Carlin, G. R. Eaton, and S. S. Eaton, J. Am. Chem. Soc. 117(23), 6265 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 46, No. 7, 2004, pp. 1323–1327.

Original Russian Text Copyright © 2004 by Titova, Domrachev, Khorshev, Ob”edkov, Kalakutskaya, Ketkov, Cherkasov, Kaverin, Zhogova, Lopatin, Karnatsevich, Gorina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Titova, S.N., Domrachev, G.A., Khorshev, S.Y. et al. Stoichiometric synthesis of fullerene compounds with lithium and sodium and analysis of their IR and EPR spectra. Phys. Solid State 46, 1365–1370 (2004). https://doi.org/10.1134/1.1778465

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1778465

Keywords

Navigation