Skip to main content

Lithium Endohedral Fullerenes

  • Living reference work entry
  • First Online:
Handbook of Fullerene Science and Technology
  • 128 Accesses

Abstract

Endohedral lithium-containing fullerene, Li@C60, was the first endohedral metallo[60]fullerene that was isolated and structurally determined. This molecule was formed by the reaction of accelerated Li ion derived from Li ion plasma with negative bias in a vacuum chamber with C60 continuously deposited on a substrate. Li@C60 was chemically oxidized after the synthesis and was first isolated in a pure cation salt ([Li+@C60]X) form. The lithium ion-encapsulating fullerene has a high electron affinity because of the electrostatic field of the inner lithium ion, and it easily accepts electrons. Utilizing this strong electron-accepting function, charge-transfer properties and reactions with nucleophiles have been investigated. Neutral lithium-encapsulating fullerene (Li@C60 = Li+@C60•–) obtained by electrochemical or chemical reduction has also been isolated, and it has been elucidated to be a monomer in an ortho-dichlorobenzene solution and a dimer in a solid. Terahertz absorption and dielectric behavior of [Li+@C60]X were studied associated with the movement of the inner lithium ions in the fullerene cage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Shinohara H, Yamaguchi H, Hayashi N, Sato H, Ohkohchi M, Ando Y, Saito Y (1993) Isolation and spectroscopic properties of scandium fullerenes (Sc2@C74, Sc2@C82, and Sc2@C84). J Phys Chem 97(17):4259–4261. https://doi.org/10.1021/j100119a004

    Article  CAS  Google Scholar 

  2. Kikuchi K, Suzuki S, Nakao Y, Nakahara N, Wakabayashi T, Shiromaru H, Saito K, Ikemoto I, Achiba Y (1993) Isolation and characterization of the metallofullerene LaC82. Chem Phys Lett 216(1):67–71. https://doi.org/10.1016/0009-2614(93)E1269-M

    Article  CAS  Google Scholar 

  3. Takata M, Umeda B, Nishibori E, Sakata M, Saito Y, Ohno M, Shinohara H (1995) Confirmation by X-ray diffraction of the endohedral nature of the metallofullerene Y@C82. Nature 377(9):46–49. https://doi.org/10.1038/377046a0

    Article  CAS  Google Scholar 

  4. Chai Y, Guo T, Jin C, Haufler RE, Chibante LPF, Fure J, Wang L, Alford JM, Smalley RE (1991) Fullerenes with metals inside. J Phys Chem 95(20):7564–7568. https://doi.org/10.1021/j100173a002

    Article  CAS  Google Scholar 

  5. Christian JF, Wan Z, Anderson SL (1992) O+ + C60·C60O+ production and decomposition, charge transfer, and formation of C59O+. Chem Phys Lett 199(3):373–378. https://doi.org/10.1016/0009-2614(92)80134-W

    Article  CAS  Google Scholar 

  6. Christian JF, Wan Z, Anderson SL (1992) Nitrogen ion (N+) + C60 fullerene reactive scattering: substitution, charge transfer, and fragmentation. J Phys Chem 96(26):10597–10600. https://doi.org/10.1021/j100205a006

    Article  CAS  Google Scholar 

  7. Wan Z, Christian JF, Anderson SL (1992) Ne+ + C60: collision energy and impact parameter dependence for endohedral complex formation, fragmentation, and charge transfer. J Chem Phys 96(8):3344–3347. https://doi.org/10.1063/1.461931

    Article  CAS  Google Scholar 

  8. Wan ZM, James F, Christian JF, Basir Y, Anderson SL (1993) Collision of alkali ions with C60/C70: insertion, thermionic emission, and fragmentation. J Chem Phys 99(07):5858–5870. https://doi.org/10.1063/1.465939

    Article  CAS  Google Scholar 

  9. Tellgmann R, Krawez N, Lin S-H, Hertel IV, Campbell EEB (1996) Endohedral fullerene production. Nature 382(8):407–408. https://doi.org/10.1038/382407a0

    Article  CAS  Google Scholar 

  10. Campbell EEB, Tellgmann R, Krawez N, Hertel IV (1997) Production and LDMS characterisation of endohedral alkali fullerene films. J Phys Chem Solids 58(11):1763–1769. https://doi.org/10.1016/S0022-3697(97)00063-2

    Article  CAS  Google Scholar 

  11. Okada H, Komuro T, Sakai T, Matsuo Y, Ono Y, Omote K, Yokoo Y, Kawachi K, Kasama Y, Ono S, Hatakeyama R, Kaneko T, Tobita H (2012) Preparation of endohedral fullerene containing lithium (Li@C60) and isolation as pure hexafluorophosphate salt ([Li+@C60][PF6]). RSC Adv 2(28):10624–10631. https://doi.org/10.1039/c2ra21244g

    Article  CAS  Google Scholar 

  12. Komatsu K, Murata M, Murata Y (2005) Encapsulation of molecular hydrogen in fullerene C60 by organic synthesis. Science 307(5707):238–240. https://doi.org/10.1126/science.1106185

    Article  CAS  PubMed  Google Scholar 

  13. Saunders M, Cross RJ, Jimenez-Vazquez HA, Shimshi R, Khong A (1996) Noble gas atoms inside fullerenes. Science 271(5256):1693–1697. https://doi.org/10.1126/science.271.5256.1693

    Article  CAS  Google Scholar 

  14. Syamala MS, Cross RJ, Saunders M (2002) 129Xe NMR spectrum of xenon inside C60. J Am Chem Soc 124(21):6216–6219. https://doi.org/10.1021/ja012676f

    Article  CAS  PubMed  Google Scholar 

  15. Aoyagi S, Nishibori E, Sawa H, Sugimoto K, Takata M, Miyata Y, Kitaura R, Shinohara H, Okada H, Sakai T, Ono Y, Kawachi K, Yokoo K, Ono S, Omote K, Kasama Y, Ishikawa S, Komuro T, Tobita H (2010) A layered ionic crystal of polar Li@C60 superatoms. Nat Chem 2(6):678–683. https://doi.org/10.1038/nchem.698

    Article  CAS  PubMed  Google Scholar 

  16. Aoyagi S, Sado Y, Nishibori E, Sawa H, Okada H, Tobita H, Kasama Y, Kitaura R, Shinohara H (2012) Rock-salt-type crystal of thermally contracted C60 with encapsulated lithium cation. Angewandte Chem Int Edition 51(14):3377–3381. https://doi.org/10.1002/anie.201108551

    Article  CAS  Google Scholar 

  17. Matsuo Y, Okada H, Maruyama M, Sato H, Tobita H, Ono Y, Omote K, Kawachi K, Kasama Y (2012) Covalently chemical modification of lithium ion-encapsulated fullerene: synthesis and characterization of [Li+@PCBM]PF6. Org Lett 14(14):3784–3787. https://doi.org/10.1021/ol301671n

    Article  CAS  PubMed  Google Scholar 

  18. Kawakami H, Okada H, Matsuo Y (2013) Efficient Diels-Alder addition of cyclopentadiene to lithium ion encapsulated [60]fullerene. Org Lett 15(17):4466–4469. https://doi.org/10.1021/ol4020046

    Article  CAS  PubMed  Google Scholar 

  19. Okada H, Matsuo Y (2014) Anion exchange of Li+@C60 salt for improved solubility. Fullerenes Nanotubes Carbon Nanostruct 22(1):262–268. https://doi.org/10.1080/1536383X.2013.812639

    Article  CAS  Google Scholar 

  20. Okada K, Kawakami H, Aoyagi S, Matsuo Y (2017) Crystallographic structure determination of both [5,6]- and [6,6]-isomers of lithium-ion-containing dipheylmethano[60]fullerene. J Org Chem 82(11):5868–5872. https://doi.org/10.1021/acs.joc.7b00730

    Article  CAS  PubMed  Google Scholar 

  21. Ueno H, Okada H, Aoyagi S, Matsuo Y (2017) Synthesis and crystal structure of Li+@Fluoreno[60]fullerene: effect of encapsulated Lithium ion on electrochemistry of Spiroannelated fullerene. J Org Chem 82(21):11631–11635. https://doi.org/10.1021/acs.joc.7b01893

    Article  CAS  PubMed  Google Scholar 

  22. Hummelen JC, Knight BW, LePeq F, Wudl F (1995) Preparation and characterization of Fulleroid and Methanofullerene derivatives. J Org Chem 60(2):532–538. https://doi.org/10.1021/jo00108a012

    Article  CAS  Google Scholar 

  23. Janssen RAJ, Hummelen JC, Wudl F (1995) Photochemical fulleroid to methanofullerene conversion via the di-. pi.-methane (Zimmerman) rearrangement. J Am Chem Soc 117(1):544–545. https://doi.org/10.1021/ja00106a068

    Article  CAS  Google Scholar 

  24. Watanabe T, Itoh MF, Komuro T, Okada H, Sakai T, Ono Y, Kawachi K, Kasama Y, Tobita H (2014) Iridium and platinum complexes of Li+@C60. Organometallics 33(3):608–611. https://doi.org/10.1021/om4008899

    Article  CAS  Google Scholar 

  25. Balch AL, Catalano VJ, Lee Balch AL, Catalano VJ, Lee JW (1991) Accumulating evidence for the selective reactivity of the 6-6 ring fusion of fullerene, C60. Preparation and structure of (.eta.2-C60)Ir(CO)Cl(PPh3)2.cntdot.5C6H6. Inorg Chem 30(21):3980–3981. https://doi.org/10.1021/ic00021a003

    Article  CAS  Google Scholar 

  26. Ueno H, Nishihara T, Segawa Y, Itami K (2015) Cycloparaphenylene-based ionic donor-acceptor supramolecule: isolation and characterization of Li+@C60 ⊂ [10] CPP. Angewandte Chem Int Edition 54(12):3707–3711. https://doi.org/10.1002/anie.201500544

    Article  CAS  Google Scholar 

  27. Ueno H, Kawakami H, Nakagawa K, Okada H, Ikuma N, Aoyagi S, Kokubo K, Matsuo Y, Oshima T (2014) Kinetic study of the Diels–Alder reaction of Li+@C60 with cyclohexadiene: greatly increased reaction rate by encapsulated Li+. J Am Chem Soc 136(31):11162–11167. https://doi.org/10.1021/ja505952y

    Article  CAS  PubMed  Google Scholar 

  28. Ueno H, Kokubo K, Kwon E, Nakamura Y, Ikuma N, Oshima T (2013) Synthesis of a new class of fullerene derivative Li+@C60O(OH)7 as a “cation-encapsulated anion nanoparticle”. Nanoscale 5(6):2317–2321. https://doi.org/10.1039/C3NR33608E

    Article  CAS  PubMed  Google Scholar 

  29. Shinohara H (2000) Endohedral metallofullerenes. Rep Prog Phys 63(6):843–892. https://doi.org/10.1088/0034-4885/63/6/201

    Article  CAS  Google Scholar 

  30. Popov AA, Yang S, Dunsch L (2013) Endohedral Fullerenes. Chem Rev 113(8):5989–6113. https://doi.org/10.1021/cr300297r

    Article  CAS  PubMed  Google Scholar 

  31. Johnson RD, de Vries MS, Salem J, Bethune DS, Yannoni CS (1992) Electron paramagnetic resonance studies of lanthanum-containing C82. Nature 355(1):239–240. https://doi.org/10.1038/355239a0

    Article  CAS  Google Scholar 

  32. Nagase S, Kobayashi K (1994) The ionization energies and electron affinities of endohedral metallofullerenes MC82 (M = Sc, Y, La): density functional calculations. J Chem Soc Chem Commun 1(24):1837–1838. https://doi.org/10.1039/c39940001837

    Article  Google Scholar 

  33. Ueno H, Kokubo K, Nakamura Y, Ohkubo K, Ikuma N, Moriyama H, Fukuzumi S, Oshima T (2013) Ionic conductivity of [Li+@C60](PF6) in organic solvents and its electrochemical reduction to Li+@C60˙. Chem Commun 49(67):7376–7378. https://doi.org/10.1039/c3cc43901a

    Article  CAS  Google Scholar 

  34. Ueno H, Aoyagi S, Yamazaki Y, Ohkubo K, Ikuma N, Okada H, Kato T, Matsuo Y, Fukuzumi S, Kokubo K (2016) Electrochemical reduction of cationic Li+@C60 to neutral Li+@C60˙: isolation and characterisation of endohedral [60]fulleride. Chem Sci 7(9):5770–5774. https://doi.org/10.1039/c6sc01209d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Okada H, Ueno H, Takabayashi Y, Nakagawa T, Vrankić M, Arvanitidis J, Kusamoto T, Prassides K, Matsuo Y (2019) Chemical reduction of Li+@C60 by decamethylferrocene to produce neutral Li+@C60˙. Carbon 153(7):467–471. https://doi.org/10.1016/j.carbon.2019.07.028

    Article  CAS  Google Scholar 

  36. Lo PS, Mayumi K (2017) Toward an integrated assessment of the performance of photovoltaic power stations for electricity generation. Appl Energy 186:167–174. https://doi.org/10.1016/j.apenergy.2016.05.102

    Article  Google Scholar 

  37. Ross RB, Cardona CM, Guldi DM, Sankaranarayanan SG, Reese MO, Kopidakis N, Peet J, Walker B, Bazan GC, Van Keuren E, Holloway BC, Drees M (2009) Endohedral fullerenes for organic photovoltaic devices. Nat Mater 8(2):208

    Article  CAS  Google Scholar 

  38. Bach U, Lupo D, Comte P, Moser JE, Weissortel F, Salbeck J, Spreitzer H, Gratzel M (1998) Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395(10):583–585. https://doi.org/10.1038/26936

    Article  CAS  Google Scholar 

  39. Abate A, Leijtens T, Pathak S, Teuscher J, Avolio R, Errico ME, Kirkpatrik J, Ball JM, Docampo P, McPherson I, Snaith H (2013) Lithium salts as “redox active” p-type dopants for organic semiconductors and their impact in solid-state dye sensitized solar cells. Phys Chem Chem Phys 15(7):2572–2579. https://doi.org/10.1039/C2CP44397J

    Article  CAS  PubMed  Google Scholar 

  40. Jeon I, Ueno H, Seo S, Aitola K, Nishikubo R, Saeki A, Okada H, Boschloo G, Maruyama S, Matsuo Y (2018) Lithium-ion endohedral fullerene (Li+@C60) dopants in stable perovskite solar cells induce instant doping and anti oxidation. Angewandte Chem Int Edition 57(17):4607–4611. https://doi.org/10.1002/anie.201800816

    Article  CAS  Google Scholar 

  41. Jeon I, Shawky A, Lin H-S, Seo S, Okada H, Lee J-W, Pal A, Tan S, Anisimov A, Kauppinen EI, Yang Y, Manzhos S, Maruyama S, Matsuo Y (2019) Controlled redox of Lithium-ion endohedral fullerene for efficient and stable metal electrode-free perovskite solar cells. J Am Chem Soc 141(42):16553–16558. https://doi.org/10.1021/jacs.9b06418

    Article  CAS  PubMed  Google Scholar 

  42. Ueno H, Jeon I, Lin H-S, Thote A, Nakagawa T, Okada H, Izawa S, Hiramoto M, Daiguji H, Maruyama S, Matsuo Y (2019) Li@C60 endohedral fullerene as a supraatomic dopant for C60 electron-transporting layers promoting the efficiency of perovskite solar cells. Chem Commun 55(79):11837–11118. https://doi.org/10.1039/C9CC06120G

    Article  CAS  Google Scholar 

  43. Ma Y, Ueno H, Okada H, Manzhos S, Matsuo Y (2020) Solvation-Free Li+ Lewis Acid Enhancing Reaction: Kinetic Study of [5,6]-Li+@PCBM to [6,6]-Li+@PCBM. Org Lett 22(18):7239–7243. https://doi.org/10.1021/acs.orglett.0c02570

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Matsuo .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ma, Y., Matsuo, Y. (2021). Lithium Endohedral Fullerenes. In: Lu, X., Akasaka, T., Slanina, Z. (eds) Handbook of Fullerene Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3242-5_31-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3242-5_31-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3242-5

  • Online ISBN: 978-981-13-3242-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics