Skip to main content
Log in

Genesis of the anomalous Hall effect in CeAl2

  • Solids
  • Electronic Properties
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The Hall coefficient R H , resistivity ρ, and Seebeck coefficient S of the CeAl2 compound with fast electron density fluctuations were studied in a wide temperature range (from 1.8 to 300 K). Detailed measurements of the angular dependences R H T, H≤70 kOe) were performed to determine contributions to the anomalous Hall effect and study the behavior of the anomalous magnetic R am H and main R a H components of the Hall signal of this compound with strong electron correlation. The special features of the behavior of the anomalous magnetic component R am H were used to analyze the complex magnetic phase diagram H-T determined by magnetic ordering in the presence of strong spin fluctuations. An analysis of changes in the main contribution R a H (H, T) to the Hall effect made it possible to determine the complex activation behavior of this anomalous component in the CeAl2 intermetallic compound. The results led us to conclude that taking into account spin-polaron effects was necessary and that the Kondo lattice and skew-scattering models were of very limited applicability as methods for describing the low-temperature transport of charge carriers in cerium-based intermetallic compounds. The effective masses and localization radii of manybody states in the CeAl2 matrix were estimated to be (55–90)m 0 and 6–10 Å, respectively. The behaviors of the parameters R H , S, and ρ were jointly analyzed. The results allowed us to consistently describe the transport coefficients of CeAl2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Coleman, P. W. Anderson, and T. V. Ramakrishnan, Phys. Rev. Lett. 55, 414 (1985).

    ADS  Google Scholar 

  2. A. Fert and P. M. Levy, Phys. Rev. B 36, 1907 (1987).

    Article  ADS  Google Scholar 

  3. P. M. Levy and A. Fert, Phys. Rev. B 39, 12224 (1989).

  4. P. M. Levy, Phys. Rev. B 38, 6779 (1988).

    ADS  Google Scholar 

  5. N. B. Brandt, V. V. Moshchalkov, N. E. Sluchanko, et al., Solid State Commun. 53, 645 (1985).

    Article  Google Scholar 

  6. V. V. Moshchalkov, F. G. Aliev, N. E. Sluchanko, et al., J. Less-Common Met. 127, 321 (1986).

    Google Scholar 

  7. T. Penney, F. P. Milliken, S. von Molnar, et al., Phys. Rev. B 34, 5959 (1986).

    Article  ADS  Google Scholar 

  8. A. Fert, P. Pureur, A. Hamzic, and J. P. Kappler, Phys. Rev. B 32, 7003 (1985).

    Article  ADS  Google Scholar 

  9. T. Hiraoka, E. Kinoshita, T. Takabatake, et al., Physica B (Amsterdam) 199–200, 440 (1994).

    Google Scholar 

  10. H. Sugawara, H. R. Sato, Y. Aoki, and H. Sato, J. Phys. Soc. Jpn. 66, 174 (1997).

    Article  Google Scholar 

  11. U. Welp, P. Haen, G. Bruls, et al., J. Magn. Magn. Mater. 63–64, 28 (1987).

    Google Scholar 

  12. N. E. Sluchanko, A. V. Bogach, V. V. Glushkov, et al., Pis’ma Zh. Éksp. Teor. Fiz. 76, 31 (2002) [JETP Lett. 76, 26 (2002)].

    Google Scholar 

  13. N. E. Sluchanko, V. V. Glushkov, S. V. Demishev, et al., Zh. Éksp. Teor. Fiz. 113, 339 (1998) [JETP 86, 190 (1998)].

    Google Scholar 

  14. B. Barbara, J. X. Boucherle, J. L. Buevoz, et al., Solid State Commun. 24, 481 (1977).

    Article  Google Scholar 

  15. F. Lapierre, P. Haen, A. Briggs, and M. Sera, J. Magn. Magn. Mater. 63–64, 76 (1987).

    Google Scholar 

  16. F. Steglich, C. D. Bredl, M. Loewenhaupt, and K. D. Schotte, J. Phys. Colloq. 40(C5), 301 (1979).

    Google Scholar 

  17. S. Osborn, M. Loewenhaupt, B. D. Rainford, and W. G. Stirling, J. Magn. Magn. Mater. 63–64, 70 (1987).

    Google Scholar 

  18. M. Loewenhaupt, W. Reichardt, R. Pynn, and E. Lindley, J. Magn. Magn. Mater. 63–64, 73 (1987).

    Google Scholar 

  19. N. E. Sluchanko, A. V. Bogach, I. B. Voskoboinikov, et al., Fiz. Tverd. Tela (St. Petersburg) 45, 1046 (2003) [Phys. Solid State 45, 1096 (2003)].

    Google Scholar 

  20. M. Croft, I. Zoric, and R. D. Parks, Phys. Rev. B 18, 345 (1978).

    ADS  Google Scholar 

  21. M. Croft, I. Zoric, and R. D. Parks, Phys. Rev. B 18, 5065 (1978).

    ADS  Google Scholar 

  22. E. Fawcett, V. Pluzhnikov, and H. Klimker, Phys. Rev. B 43, 8531 (1991).

    Article  ADS  Google Scholar 

  23. N. B. Brandt and V. V. Moshchalkov, Adv. Phys. 33, 373 (1984).

    ADS  Google Scholar 

  24. M. Christen and M. Godet, Phys. Lett. A 63A, 125 (1977).

    ADS  Google Scholar 

  25. N. F. Mott, Metal-Insulator Transitions (Taylor and Francis, London, 1974; Nauka, Moscow, 1979).

    Google Scholar 

  26. S. H. Liu, Phys. Rev. B 37, 3542 (1988).

    ADS  Google Scholar 

  27. T. Portengen, Th. Ostreich, and L. J. Sham, Phys. Rev. B 54, 17452 (1996).

    Google Scholar 

  28. M. Loewenhaupt, B. D. Rainford, and F. Steglich, Phys. Rev. Lett. 42, 1709 (1979); M. Loewenhaupt and U. Witte, J. Phys.: Condens. Matter 15, S519 (2003).

    Article  ADS  Google Scholar 

  29. P. Thalmeier and P. Fulde, Phys. Rev. Lett. 49, 1588 (1982).

    Article  ADS  Google Scholar 

  30. G. Guntherodt, A. Jayaraman, G. Batlogg, et al., Phys. Rev. Lett. 51, 2330 (1983).

    ADS  Google Scholar 

  31. N. E. Sluchanko, V. V. Glushkov, B. P. Gorshunov, et al., Phys. Rev. B 61, 9906 (2000).

    ADS  Google Scholar 

  32. B. Barbara, M. F. Rossignol, J. X. Boucherle, et al., Phys. Rev. Lett. 45, 938 (1980).

    Article  ADS  Google Scholar 

  33. A. Benoit, J. X. Boucherle, J. Flouquet, et al., in Valence Fluctuations in Solids, Ed. by L. M. Falicov, W. Hanke, and M. B. Maple (North-Holland, Amsterdam, 1981), p. 197.

    Google Scholar 

  34. M. C. Croft, R. P. Guertin, L. C. Kupferberg, and R. D. Parks, Phys. Rev. B 20, 2073 (1979).

    Article  ADS  Google Scholar 

  35. C. D. Bredl, F. Steglich, and K. D. Schotte, Z. Phys. B 29, 327 (1978).

    Google Scholar 

  36. N. E. Sluchanko, V. V. Glushkov, S. V. Demishev, et al., Zh. Éksp. Teor. Fiz. 119, 359 (2001) [JETP 92, 312 (2001)].

    Google Scholar 

  37. N. E. Sluchanko, V. V. Glushkov, S. V. Demishev, et al., Phys. Rev. B 65, 064404 (2002).

    Google Scholar 

  38. G. Hampel and R. H. Blick, J. Low Temp. Phys. 99, 71 (1995).

    Article  Google Scholar 

  39. D. E. MacLaughlin, O. Peca, and M. Lysak, Phys. Rev. B 23, 1039 (1981).

    Article  ADS  Google Scholar 

  40. J. L. Gavilano, J. Hunziker, O. Hudak, et al., Phys. Rev. B 47, 3438 (1993).

    Article  ADS  Google Scholar 

  41. S. M. Schapiro, E. Gurewitz, R. D. Parks, and L. C. Kupferberg, Phys. Rev. Lett. 43, 1748 (1979).

    ADS  Google Scholar 

  42. A. Schenk, D. Andreica, M. Pinkpank, et al., Physica B (Amsterdam) 259–261, 14 (1999).

    Google Scholar 

  43. A. Schenk, D. Andreica, F. N. Gygax, and H. R. Ott, Phys. Rev. B 65, 024444 (2002).

    Google Scholar 

  44. A. Amato, Rev. Mod. Phys. 69, 1119 (1997).

    Article  ADS  Google Scholar 

  45. E. M. Forgan, B. D. Rainford, S. L. Lee, et al., J. Phys.: Condens. Matter 2, 10211 (1990).

    Google Scholar 

  46. F. Giford, J. Schweizer, and F. Tasset, Physica B (Amsterdam) 234–236, 685 (1997).

    Google Scholar 

  47. T. Chattopadhyay and G. J. McIntyre, Physica B (Amsterdam) 234–236, 682 (1997).

    Google Scholar 

  48. J. Ye, Y. B. Kim, A. J. Millis, et al., Phys. Rev. Lett. 83, 3737 (1999).

    ADS  Google Scholar 

  49. Y. B. Kim, P. Majumdar, A. J. Millis, and B. I. Shraiman, cond-mat/9803350 (1998).

  50. E. Walker, H. G. Purwins, M. Landolt, and F. Hulliger, J. Less-Common Met. 33, 203 (1973).

    Article  Google Scholar 

  51. J. Sakurai, H. Takagi, T. Kuwai, and Y. Isikawa, J. Magn. Magn. Mater. 177–181, 407 (1998).

    Google Scholar 

  52. K. H. Fisher, Z. Phys. B 76, 315 (1989).

    Google Scholar 

  53. P. M. Chaikin, in Organic Superconductivity, Ed. by V. Z. Kresin and W. A. Little (Plenum, New York, 1990), p. 101.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 125, No. 4, 2004, pp. 906–926.

Original Russian Text Copyright © 2004 by Sluchanko, Bogach, Glushkov, Demishev, Ignatov, Samarin, Burkhanov, Chistyakov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sluchanko, N.E., Bogach, A.V., Glushkov, V.V. et al. Genesis of the anomalous Hall effect in CeAl2 . J. Exp. Theor. Phys. 98, 793–810 (2004). https://doi.org/10.1134/1.1757679

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1757679

Keywords

Navigation