Skip to main content
Log in

Error field amplification near the stability boundary of the modes interacting with a conducting wall

  • Tokamaks
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The effect is considered of the amplification of an external resonant error field near the stability boundary of the so-called resistive wall modes observed in the DIII-D tokamak. The analysis is performed in a standard cylindrical approximation. The model is based on Maxwell’s equations and Ohm’s law; therefore, the results of the analysis are valid for any large-scale modes interacting with a conducting wall. In contrast to earlier approaches, the model considers the resonant field amplification as a dynamic effect. It is shown that, when the effect is the strongest, the stationary solutions proposed earlier are inapplicable. The problem of plasma response to a probing pulse of the resonant field of a given amplitude and duration is analyzed. The relationships obtained explain the basic features of the observed phenomena in the DIII-D tokamak and allow direct experimental verification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. S. Taylor, H. St. John, A. D. Turnbull, et al., Plasma Phys. Controlled Fusion 36, B229 (1994).

    Article  ADS  Google Scholar 

  2. A. D. Turnbull, T. S. Taylor, M. S. Chu, et al., Nucl. Fusion 38, 1467 (1998).

    Article  Google Scholar 

  3. C. Gormezano, Plasma Phys. Controlled Fusion 41, B367 (1999).

    Article  Google Scholar 

  4. A. Bondeson, D.-H. Liu, F. X. Söldner, et al., Nucl. Fusion 39, 1523 (1999).

    Article  Google Scholar 

  5. T. Fujita, Y. Kamada, S. Ishida, et al., Nucl. Fusion 39, 1627 (1999).

    Article  Google Scholar 

  6. V. S. Chan, C. M. Greenfield, L. L. Lao, et al., Nucl. Fusion 40, 1137 (2000).

    Article  Google Scholar 

  7. O. Gruber, R. Wolf, H.-S. Bosch, et al., Nucl. Fusion 40, 1145 (2000).

    Article  Google Scholar 

  8. Y. Kamada and JT-60 Team, Nucl. Fusion 41, 1311 (2001).

    Article  Google Scholar 

  9. ITER Physics Basis, Nucl. Fusion 39, 2137 (1999).

  10. A. B. Mikhailovskii and B. N. Kuvshinov, Fiz. Plazmy 21, 835 (1995) [Plasma Phys. Rep. 21, 789 (1995)].

    Google Scholar 

  11. D. J. Ward and A. Bondeson, Phys. Plasmas 2, 1570 (1995).

    Article  ADS  Google Scholar 

  12. A. D. Turnbull, D. P. Brennan, M. S. Chu, et al., Nucl. Fusion 42, 917 (2002).

    Article  Google Scholar 

  13. A. M. Garofalo, A. D. Turnbull, M. E. Austin, et al., Phys. Rev. Lett. 82, 3811 (1999).

    Article  ADS  Google Scholar 

  14. A. M. Garofalo, A. D. Turnbull, E. J. Strait, et al., Phys. Plasmas 6, 1893 (1999).

    Article  ADS  Google Scholar 

  15. E. J. Strait, A. M. Garofalo, M. E. Austin, et al., Nucl. Fusion 39(11Y), 1977 (1999).

    Article  Google Scholar 

  16. A. M. Garofalo, E. J. Strait, J. M. Bialek, et al., Nucl. Fusion 40, 1491 (2000).

    Article  Google Scholar 

  17. A. M. Garofalo, J. Bialek, A. H. Boozer, et al., in Proceedings of the 18th IAEA Fusion Energy Conference, Sorrento, 2000 (IAEA, Vienna, 2001), Report IAEACN-77/EXP3/01 (http://www.iaea.org/programmes/ripc/physics/).

    Google Scholar 

  18. A. M. Garofalo, M. S. Chu, E. D. Fredrickson, et al., Nucl. Fusion 41, 1171 (2001).

    Article  Google Scholar 

  19. M. Okabayashi, J. Bialek, M. S. Chance, et al., Phys. Plasmas 8, 2071 (2001).

    Article  ADS  Google Scholar 

  20. L. C. Johnson, M. Okabayashi, A. M. Garofalo, et al., in Proceedings of the 28th EPS Conference on Controlled Fusion and Plasma Physics, Funchal, 2001; ECA 25A, 1361 (2001); http://www.cfn.ist.utl.pt/EPS2001/fin/pdf/P4.008.pdf.

    Google Scholar 

  21. M. Okabayashi, J. Bialek, M. Chance, et al., J. Plasma Fusion Res. SERIES 5, 42 (2002).

    Google Scholar 

  22. A. M. Garofalo, T. H. Jensen, L. C. Johnson, et al., Phys. Plasmas 9, 1997 (2002).

    ADS  Google Scholar 

  23. M. Okabayashi, J. Bialek, M. S. Chance, et al., Plasma Phys. Controlled Fusion 44, B339 (2002).

    Article  Google Scholar 

  24. A. M. Garofalo, R. J. La Haye, and J. T. Scoville, Nucl. Fusion 42, 1335 (2002).

    Article  Google Scholar 

  25. E. J. Strait, J. Bialek, N. Bogatu, et al., in Proceedings of the 19th IAEA Fusion Energy Conference, Lyon, 2002, Paper IAEA-CN-94/EX/S2-1.

  26. E. J. Strait, J. Bialek, N. Bogatu, et al., Nucl. Fusion 43, 430 (2003).

    Article  Google Scholar 

  27. M. S. Chu, M. S. Chance, A. H. Glasser, and M. Okabayashi, Nucl. Fusion 43, 441 (2003).

    ADS  Google Scholar 

  28. A. H. Boozer, Phys. Rev. Lett. 86, 5059 (2001).

    Article  ADS  Google Scholar 

  29. A. H. Boozer, Phys. Plasmas 10, 1458 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  30. V. D. Pustovitov, Fiz. Plazmy 27, 209 (2001) [Plasma Phys. Rep. 27, 195 (2001)].

    Google Scholar 

  31. V. D. Pustovitov, J. Plasma Fusion Res. SERIES 5, 278 (2002).

    Google Scholar 

  32. A. Bondeson, Y. Q. Liu, D. Gregoratto, et al., Nucl. Fusion 42, 768 (2002).

    Article  Google Scholar 

  33. A. Bondeson, Y. Q. Liu, D. Gregoratto, et al., Phys. Plasmas 9, 2044 (2002).

    Article  ADS  Google Scholar 

  34. A. I. Morozov and L. S. Solov’ev, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Gosatomizdat, Moscow, 1963; Consultants Bureau, New York, 1966), Vol. 2.

    Google Scholar 

  35. Y. Q. Liu and A. Bondeson, Phys. Rev. Lett. 84, 907 (2000).

    ADS  Google Scholar 

  36. Y. Q. Liu, A. Bondeson, C. M. Fransson, et al., Phys. Plasmas 7, 3681 (2000).

    ADS  Google Scholar 

  37. A. Bondeson, Yueqiang Liu, C. M. Fransson, et al., Nucl. Fusion 41, 455 (2001).

    Article  Google Scholar 

  38. M. S. Chance, M. S. Chu, M. Okabayashi, and A. D. Turnbull, Nucl. Fusion 42, 295 (2002).

    Article  Google Scholar 

  39. S. Yu. Medvedev and V. D. Pustovitov, submitted to Fiz. Plazmy.

  40. A. H. Boozer, Phys. Plasmas 5, 3350 (1998).

    ADS  MathSciNet  Google Scholar 

  41. A. H. Boozer, Phys. Plasmas 6, 3180 (1999).

    ADS  MathSciNet  Google Scholar 

  42. J. Bialek, A. H. Boozer, M. E. Mauel, and G. A. Navratil, Phys. Plasmas 8, 2170 (2001).

    Article  ADS  Google Scholar 

  43. A. P. Popryadukhin, Preprint No. 038–88 (Moscow Institute of Engineering Physics, Moscow, 1988).

  44. G. S. Lee, D. P. Ivanov, H. L. Yang, et al., J. Plasma Fusion Res. SERIES 5, 261 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Plazmy, Vol. 30, No. 3, 2004, pp. 211–220.

Original Russian Text Copyright © 2004 by Pustovitov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pustovitov, V.D. Error field amplification near the stability boundary of the modes interacting with a conducting wall. Plasma Phys. Rep. 30, 187–195 (2004). https://doi.org/10.1134/1.1687020

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1687020

Keywords

Navigation