Skip to main content
Log in

Mirror nesting of the Fermi contour and zero line of the superconducting order parameter

  • Solids
  • Electronic Properties
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The superconducting order parameter that emerges owing to pairing of charge carriers with a large total momentum of the pair during screened Coulomb repulsion in a degenerate quasi-two-dimensional electronic system is determined as a function of the momentum of relative motion of the pair. In view of the kinematic constraint associated with Fermi filling, the ordered state exists in a limited domain of the momentum space, the shape and size of this domain being determined by the total momentum of the pair. The order parameter is not a constant-sign function of the momentum and reverses its sign on a certain line in a kinematically allowed domain. Superconducting instability arises for an arbitrarily small value of the repulsive interaction for certain momenta of the pair, for which the mirror nesting condition is satisfied; this results in the formation of a pair Fermi contour, i.e., the line of coincidence of segments of the Fermi contour with the isoline of the kinetic energy of relative motion of the pair. The temperature dependence of the superconducting order parameter is studied. Owing to the proximity effect in the momentum space, superconducting ordering is extended to the kinematically forbidden domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  2. V. L. Ginzburg, in Problems in High-Temperature Super-conductivity, Ed. by V. L. Ginzburg and D. A. Kirzhnits (Nauka, Moscow, 1977), Chap. 1.

    Google Scholar 

  3. S. Chakravarty, R. B. Laughlin, D. K. Morr, and C. Nayak, Phys. Rev. B 63, 094503 (2001).

    Google Scholar 

  4. J. Orenstein and A. J. Millis, Science 288, 468 (2000).

    Article  ADS  Google Scholar 

  5. Z.-X. Shen, W. E. Spicer, D. M. King, et al., Science 267, 343 (1995).

    ADS  Google Scholar 

  6. E. W. Carlson, V. J. Emery, S. A. Kivelson, and D. Orgad, cond-mat/0206217.

  7. D. A. Wollman, D. J. V. Harlingen, W. C. Lee, et al., Phys. Rev. Lett. 71, 2134 (1993).

    Article  ADS  Google Scholar 

  8. C. C. Tsuei, J. R. Kirtley, C. C. Chi, et al., Phys. Rev. Lett. 73, 593 (1994).

    Article  ADS  Google Scholar 

  9. C. Renner, B. Revaz, J.-Y. Genoud, et al., Phys. Rev. Lett. 80, 149 (1998).

    ADS  Google Scholar 

  10. Y. de Wilde, N. Miyakawa, P. Guptasarma, et al., Phys. Rev. Lett. 80, 153 (1998).

    ADS  Google Scholar 

  11. J. E. Hirsch, Phys. Rev. B 59, 11962 (1999).

    Google Scholar 

  12. J. E. Hirsch, Physica C (Amsterdam) 341–348, 213 (2000).

    Google Scholar 

  13. J. E. Hirsch and F. Marsiglio, Phys. Rev. B 39, 11515 (1989); F. Marsiglio and J. E. Hirsch, Phys. Rev. B 41, 6435 (1990).

  14. M. R. Norman, M. Randeria, B. Jankó, and J. C. Campuzano, Phys. Rev. B 61, 14742 (2000).

    Google Scholar 

  15. V. I. Belyavskii, V. V. Kapaev, and Yu. V. Kopaev, Zh. Éksp. Teor. Fiz. 118, 941 (2000) [JETP 91, 817 (2000)].

    Google Scholar 

  16. V. I. Belyavsky and Yu. V. Kopaev, Phys. Lett. A 287, 152 (2001).

    Article  ADS  Google Scholar 

  17. V. I. Belyavskii and Yu. V. Kopaev, Zh. Éksp. Teor. Fiz. 121, 175 (2002) [JETP 94, 149 (2002)].

    Google Scholar 

  18. V. I. Belyavskii, V. V. Kapaev, and Yu. V. Kopaev, Pis’ma Zh. Éksp. Teor. Fiz. 76, 51 (2002) [JETP Lett. 76, 44 (2002)].

    Google Scholar 

  19. V. I. Belyavsky and Yu. V. Kopaev, Phys. Rev. B 67, 024513 (2003).

    Google Scholar 

  20. P. Fulde and R. A. Ferrel, Phys. Rev., Sect. A 135, 550 (1964).

    ADS  Google Scholar 

  21. A. I. Larkin and Yu. N. Ovchinnikov, Zh. Éksp. Teor. Fiz. 47, 1136 (1964) [Sov. Phys. JETP 20, 762 (1964)].

    Google Scholar 

  22. R. Combescot, Phys. Rev. B 57, 8632 (1998).

    Article  ADS  Google Scholar 

  23. R. Hlubina and T. M. Rice, Phys. Rev. B 51, 9253 (1995).

    Article  ADS  Google Scholar 

  24. J. Schmalian, D. Pines, and B. Stojkovi, Phys. Rev. B 60, 667 (1999).

    Article  ADS  Google Scholar 

  25. V. L. Gurevich, A. I. Larkin, and Yu. A. Firsov, Fiz. Tverd. Tela (Leningrad) 4, 185 (1962) [Sov. Phys. Solid State 4, 131 (1962)].

    Google Scholar 

  26. M. L. Cohen, in Superconductivity, Ed. by R. D. Parks (Marcel Dekker, New York, 1969; Mir, Moscow, 1972).

    Google Scholar 

  27. C. Kittel, Quantum Theory of Solids (Wiley, New York, 1963; Nauka, Moscow, 1967).

    Google Scholar 

  28. M. L. Krasnov, Integral Equations (Nauka, Moscow, 1975).

    Google Scholar 

  29. S. G. Mikhlin, Lectures on Integral Equations (Fizmatgiz, Moscow, 1959).

    Google Scholar 

  30. V. S. Vladimirov, Equations of Mathematical Physics (Nauka, Moscow, 1967; Marcel Dekker, New York, 1971).

    Google Scholar 

  31. N. H. March, W. H. Young, and S. Sampanthar, The Many-Body Problem in Quantum Mechanics (Cambridge University Press, Cambridge, 1967; Mir, Moscow, 1969).

    Google Scholar 

  32. A. Ya. Shik, Fiz. Tekh. Poluprovodn. (St. Petersburg) 29, 1345 (1995) [Semiconductors 29, 697 (1995)].

    Google Scholar 

  33. Yu. E. Lozovik and V. I. Yudson, Fiz. Tverd. Tela (Leningrad) 17, 1613 (1975) [Sov. Phys. Solid State 17, 1054 (1975)].

    Google Scholar 

  34. M. Chiao, R. W. Hill, C. Lupien, et al., Phys. Rev. B 62, 3554 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 124, No. 5, 2003, pp. 1149–1171.

Original Russian Text Copyright © 2003 by Belyavsky, Kopaev, Sofronov, Shevtsov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belyavsky, V.I., Kopaev, Y.V., Sofronov, V.M. et al. Mirror nesting of the Fermi contour and zero line of the superconducting order parameter. J. Exp. Theor. Phys. 97, 1032–1052 (2003). https://doi.org/10.1134/1.1633960

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1633960

Keywords

Navigation