Skip to main content
Log in

On the kinetics of slow polarization in the lead magnoniobate ferroelectric relaxor

  • Magnetism and Ferroelectricity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Polarization and repolarization of a (100)-oriented lead magnoniobate crystal in slowly varying and dc electric fields were measured in a temperature interval including the relaxor and field-induced ferroelectric states. Throughout the interval covered, the polarization was shown to exhibit features characteristic of relaxors, namely, open, nonreproducing polarization trajectories in the first few cycles of quasistatic dielectric hysteresis loops and very long relaxation times. The slow thermally activated relaxation stage follows the universal power law evolution, which permits one to determine possible simple spectra of the relaxation time distribution. Temperature dependences of some relaxation and spectral parameters were derived, and their differences in the relaxor and ferroelectric phases are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Smolenskii, V. A. Isupov, and A. I. Agranovskaya, Fiz. Tverd. Tela (Leningrad) 1, 167 (1959) [Sov. Phys. Solid State 1, 147 (1959)].

    Google Scholar 

  2. G. A. Smolenskii, V. A. Bokov, V. A. Isupov, N. N. Krainik, R. E. Pasynkov, and M. S. Shur, Ferroelectrics and Antiferroelectrics (Nauka, Leningrad, 1971), p. 355.

    Google Scholar 

  3. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford Univ. Press, Oxford, 1977; Mir, Moscow, 1981).

    Google Scholar 

  4. L. E. Cross, Ferroelectrics 76, 241 (1987).

    Google Scholar 

  5. V. A. Bokov and I. E. Mel’nikova, Fiz. Tverd. Tela (Leningrad) 3(3), 841 (1961) [Sov. Phys. Solid State 3, 613 (1961)].

    Google Scholar 

  6. R. Sommer, N. K. Yushin, and J. J. van der Klink, Ferroelectrics 127(1–4), 235 (1992).

    Google Scholar 

  7. Zuo-Guang Ye and H. Schmid, Ferroelectrics 145, 83 (1993).

    Google Scholar 

  8. R. Sommer, N. K. Yushin, and J. J. Van der Klink, Phys. Rev. B 48(18), 13230 (1993).

    Google Scholar 

  9. A. A. Bokov and Z.-G. Ye, J. Phys.: Condens. Matter 12, L541 (2000).

    Article  ADS  Google Scholar 

  10. A. A. Bokov and Z.-G. Ye, Appl. Phys. Lett. 77(12), 1888 (2000).

    Article  ADS  Google Scholar 

  11. A. Levstik, Z. Kutnjak, G. Filipic, and R. Pirc, Phys. Rev. B 57(18), 11204 (1998).

  12. R. Blinc, J. Dolinsek, A. Gregorovic, et al., Phys. Rev. Lett. 83(2), 424 (1999).

    Article  ADS  Google Scholar 

  13. A. K. Tagantsev and A. E. Glazunov, Phase Transit. 65(1–4), 117 (1998).

    Google Scholar 

  14. H. Arndt, F. Sauerbier, and G. Schmidt, Ferroelectrics 79, 145 (1988).

    Google Scholar 

  15. E. V. Colla, E. Yu. Koroleva, N. M. Okuneva, and S. B. Vakhrushev, J. Phys.: Condens. Matter. 4, 3671 (1992).

    Article  ADS  Google Scholar 

  16. R. Pirc, R. Blinc, and Z. Kutnjak, Ferroelectrics 267, 139 (2002).

    Article  Google Scholar 

  17. N. K. Yushin and S. N. Dorogovtsev, Ferroelectrics 134, 265 (1992).

    Google Scholar 

  18. Z. Kutnjak, A. Levstik, and R. Pirc, Ferroelectrics 270, 283 (2002).

    Article  Google Scholar 

  19. A. K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectrics, London, 1983).

    Google Scholar 

  20. V. V. Gladkii, V. A. Kirikov, S. V. Nekhlyudov, and E. S. Ivanova, Fiz. Tverd. Tela (St. Petersburg) 39(11), 2046 (1997) [Phys. Solid State 39, 1829 (1997)].

    Google Scholar 

  21. V. V. Gladkii, V. A. Kirikov, S. V. Nekhlyudov, et al., Fiz. Tverd. Tela (St. Petersburg) 42(7), 1296 (2000) [Phys. Solid State 42, 1334 (2000)].

    Google Scholar 

  22. V. V. Gladkii, V. A. Kirikov, E. S. Ivanova, and S. V. Nekhlyudov, Fiz. Tverd. Tela (St. Petersburg) 41(3), 499 (1999) [Phys. Solid State 41, 447 (1999)].

    Google Scholar 

  23. V. V. Gladkii, V. A. Kirikov, S. V. Nekhlyudov, et al., Pis’ma Zh. Éksp. Teor. Fiz. 71(1), 38 (2000) [JETP Lett. 71, 24 (2000)].

    Google Scholar 

  24. T. Granzow, U. Dorfler, Th. Woike, et al., Phys. Rev. B 63, 174101 (2001).

  25. V. V. Gladkii, V. A. Kirikov, and T. R. Volk, Fiz. Tverd. Tela (St. Petersburg) 44(2), 351 (2002) [Phys. Solid State 44, 365 (2002)].

    Google Scholar 

  26. V. V. Gladkii, V. A. Kirikov, T. R. Volk, and L. I. Ivleva, Zh. Éksp. Teor. Fiz. 120(3), 678 (2001) [JETP 93, 596 (2001)].

    Google Scholar 

  27. V. A. Ditkin and A. P. Prudnikov, Reference Book on Operational Calculus (Vysshaya Shkola, Moscow, 1956).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 45, No. 7, 2003, pp. 1238–1244.

Original Russian Text Copyright © 2003 by Gladki\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\), Kirikov, Pronina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gladkii, V.V., Kirikov, V.A. & Pronina, E.V. On the kinetics of slow polarization in the lead magnoniobate ferroelectric relaxor. Phys. Solid State 45, 1298–1304 (2003). https://doi.org/10.1134/1.1594246

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1594246

Keywords

Navigation