Skip to main content
Log in

Relaxation of a defect subsystem in silicon irradiated with high-energy heavy ions

  • Electronic and Optical Properties of Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The relaxation of a silicon defect subsystem modified by the implantation of high-energy heavy ions was studied by varying the electrical properties of irradiated Si crystal annealed at a temperature of 450°C. It is shown that quenched-in acceptors are introduced into Si crystals as a result of irradiation with comparatively low doses of Bi ions and subsequent relatively short annealing (no longer than 5 h); the distribution of these quenched-in acceptors has two peaks located at a depth of about 10 µm and at a depth corresponding approximately to the ions’ projected range (43.5 µm). The peaks in the distribution of quenched-in acceptors correspond to the regions enriched with vacancy-containing defects. As the heat-treatment duration increases, the acceptor centers are transformed into donor centers with the centers’ spatial distribution remaining intact. Simultaneously, an almost uniform introduction of quenched-in donors occurs in the entire crystal beyond the depth corresponding to the projected range of ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Kögler, A. Peeva, P. Werner, et al., Nucl. Instrum. Methods Phys. Res. B 175–177, 340 (2001).

    Google Scholar 

  2. R. Kalyanaraman, T. E. Haynes, M. Yoon, et al., Nucl. Instrum. Methods Phys. Res. B 175–177, 182 (2001).

    Google Scholar 

  3. A. Agarwal, K. Christensen, D. Venables, et al., Appl. Phys. Lett. 69, 3899 (1996).

    Article  ADS  Google Scholar 

  4. R. A. Brown, O. Kononchuk, G. A. Rozgonyi, et al., J. Appl. Phys. 84, 2459 (1998).

    Article  ADS  Google Scholar 

  5. A. Borgezi, B. Pivac, A. Sassella, and A. Stella, J. Appl. Phys. 77, 4169 (1995).

    ADS  Google Scholar 

  6. V. F. Stas’, I. V. Antonova, E. P. Neustroev, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 34, 162 (2000) [Semiconductors 34, 155 (2000)].

    Google Scholar 

  7. A. Dunlop, G. Jaskierowicz, and S. Della-Negra, Nucl. Instrum. Methods Phys. Res. B 146, 302 (1998).

    ADS  Google Scholar 

  8. A. R. Chelyadinskii, V. S. Varichenko, and A. M. Zaitsev, Fiz. Tverd. Tela (St. Petersburg) 40, 1627 (1998) [Phys. Solid State 40, 1478 (1998)].

    Google Scholar 

  9. E. P. Neustroev, I. V. Antonova, V. P. Popov, et al., Nucl. Instrum. Methods Phys. Res. B 171, 443 (2000).

    Article  ADS  Google Scholar 

  10. I. V. Antonova, E. P. Neustroev, V. P. Popov, and V. F. Stas’, Perspekt. Mater. 1, 43 (2001).

    Google Scholar 

  11. I. V. Antonova, E. P. Neustroev, V. P. Popov, et al., Physica B (Amsterdam) 270(1–2), 1 (1999).

    ADS  Google Scholar 

  12. V. V. Voronkov, G. I. Voronkova, A. V. Batunina, et al., Fiz. Tverd. Tela (St. Petersburg) 42, 1969 (2000) [Phys. Solid State 42, 2022 (2000)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 37, No. 5, 2003, pp. 565–569.

Original Russian Text Copyright © 2003 by Smagulova, Antonova, Neustroev, Skuratov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smagulova, S.A., Antonova, I.V., Neustroev, E.P. et al. Relaxation of a defect subsystem in silicon irradiated with high-energy heavy ions. Semiconductors 37, 546–550 (2003). https://doi.org/10.1134/1.1575358

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1575358

Keywords

Navigation