Skip to main content
Log in

Magnetic polarons, clusters, and their effect on the electric properties of weakly doped lanthanum manganites

  • Condensed Matter
  • Published:
Journal of Experimental and Theoretical Physics Letters Aims and scope Submit manuscript

Abstract

The resistivity, magnetoresistance, thermopower, and magnetic susceptibility of La1−x AxMnO3(A≡Ca,Sr;x=0.07–0.1) single crystals are investigated in the temperature range from 77 to 400 K. Sharp changes in the properties (the resistivity activation energy ΔEρ, its temperature coefficient γ, the thermopower activation energy ΔE S , the magnetoresistance, and the appearance of spontaneous magnetization) of these crystals occur near a temperature of 275±25 K, which is approximately twice as high as their Curie point T C and approximately half of the structural transition temperature. The results are explained by the phase separation: the formation of ferromagnetic clusters. The phase separation occurs through the coalescence of small-radius unsaturated magnetic polarons, in which only two or three magnetic moments of Mn are polarized, into a large-radius ferromagnetic polaron (a cluster about 10–12 Å in size) with several charge carriers. As a result, the short-range order occurs in the cluster at a temperature of about 275 K, which is close to T C of conducting doped manganites. The results of the experimental studies of the resistivity and the magnetoresistance as functions of temperature and magnetic field and the estimates agree well with the cluster model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. É. L. Nagaev, Usp. Fiz. Nauk 166, 833 (1996) [Phys. Usp. 39, 781 (1996)].

    Google Scholar 

  2. A. J. Millis, P. B. Littlewood, and B. I. Shraiman, Phys. Rev. Lett. 74, 5144 (1995).

    Article  ADS  Google Scholar 

  3. C. M. Varma, Phys. Rev. B 54, 7328 (1996).

    Article  ADS  Google Scholar 

  4. L. Sheng, D. Y. Xing, D. N. Sheng, and C. S. Ting, Phys. Rev. Lett. 79, 1710 (1997); Phys. Rev. B 56, R7053 (1997).

    Article  ADS  Google Scholar 

  5. R. M. Kusters, J. Singleton, D. A. Keen, et al., Physica B (Amsterdam) 155, 362 (1989).

    ADS  Google Scholar 

  6. J. M. De Teresa, M. R. Ibarra, P. A. Algarabel, et al., Nature 386, 256 (1997).

    Article  Google Scholar 

  7. M. Hennion, F. Mussa, G. Biotteau, et al., Phys. Rev. Lett. 81, 1957 (1998).

    Article  ADS  Google Scholar 

  8. A. Moreo, S. Yunoki, and E. Dagotto, Science 283, 2034 (1999).

    Article  Google Scholar 

  9. Yu. A. Izyumov and Yu. I. Skryabin, Usp. Fiz. Nauk 171, 121 (2001) [Phys. Usp. 44, 109 (2001)].

    Google Scholar 

  10. M. Yu. Kagan and K. I. Kugel’, Usp. Fiz. Nauk 171, 577 (2001) [Phys. Usp. 44, 553 (2001)].

    Google Scholar 

  11. M. Hennion, F. Mussa, G. Biotteau, et al., Phys. Rev. B 61, 9513 (2000).

    Article  ADS  Google Scholar 

  12. G. Biotteau, M. Hennion, F. Mussa, et al., Phys. Rev. B 64, 104421 (2001).

  13. F. Mussa, M. Hennion, G. Biotteau, et al., Phys. Rev. B 60, 12299 (1999).

  14. C. P. Bean and J. D. Divingston, J. Appl. Phys. 30S, 120 (1959).

    Google Scholar 

  15. N. N. Loshkareva, A. V. Korolev, T. I. Arbuzova, et al., Fiz. Tverd. Tela (St. Petersburg) 44, 1827 (2002) [Phys. Solid State 44, 1916 (2002)].

    Google Scholar 

  16. N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd ed. (Clarendon Press, Oxford, 1979; Mir, Moscow, 1982).

    Google Scholar 

  17. M. Jaime, M. B. Salamon, K. Pettit, et al., Appl. Phys. Lett. 68, 1576 (1996); Guo-meng Zhao, Y. S. Wang, D. J. Kang, et al., Phys. Rev. B 62, R11949 (2000).

    Article  ADS  Google Scholar 

  18. N. I. Solin and S. V. Naumov, Fiz. Tverd. Tela (St. Petersburg) 45, 460 (2003) [Phys. Solid State 45, 486 (2003)].

    Google Scholar 

  19. H. Y. Fan, Phys. Rev. 78, 808 (1950).

    ADS  Google Scholar 

  20. É. L. Nagaev, Pis’ma Zh. Éksp. Teor. Fiz. 6, 484 (1967) [JETP Lett. 6, 18 (1967)].

    Google Scholar 

  21. M. A. Krivoglaz, Usp. Fiz. Nauk 111, 617 (1973) [Sov. Phys. Usp. 16, 856 (1973)].

    Google Scholar 

  22. T. Kasuya and A. Yanase, Solid State Commun. 8, 1543 (1970).

    Google Scholar 

  23. A. O. Sboichakov, A. L. Rakhmanov, K. I. Kugel’, et al., Zh. Éksp. Teor. Fiz. 122, 869 (2002) [JETP 95, 753 (2002)].

    Google Scholar 

  24. L. I. Koroleva, R. V. Demin, and A. M. Balbashov, Pis’ma Zh. Éksp. Teor. Fiz. 65, 449 (1997) [JETP Lett. 65, 474 (1997)].

    Google Scholar 

  25. I. G. Austin and N. F. Mott, Adv. Phys. 18, 41 (1969).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Pis’ma v Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 77, No. 5, 2003, pp. 275–280.

Original Russian Text Copyright © 2003 by Solin, Mashkautsan, Korolev, Loshkareva, Pinsard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solin, N.I., Mashkautsan, V.V., Korolev, A.V. et al. Magnetic polarons, clusters, and their effect on the electric properties of weakly doped lanthanum manganites. Jetp Lett. 77, 230–235 (2003). https://doi.org/10.1134/1.1574837

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1574837

PACS numbers

Navigation