Skip to main content
Log in

Antiferromagnetic-resonance spectrum in charge-ordered R0.5Ca0.5MnO3 manganites (R=La, Pr, Tb): The effect of orbital and charge structures

  • Solids
  • Structure
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A theoretical study is made into the effect of the crystal, orbital, and charge structures on the magnetic structure and spin-wave spectra and on the antiferromagnetic resonance (AFMR) for R0.5Ca0.5MnO3 crystals of monoclinic structure. The model assumes fixed crystal, charge, and orbital structures and enables one to determine the orbitally dependent exchange interaction and single-ion anisotropy for R = La, Pr, Tb. A 16-sublattice weakly noncollinear magnetic CE-structure without a ferromagnetic component is obtained. The behavior of magnetic structure in an external magnetic field is simulated, and the values of fields of spin-flop-transition for different Rs are obtained. The law of spin-wave dispersion and the field dependence of the antiferromagnetic-resonance spectrum are calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. B. Goodenough, Phys. Rev. 100, 564 (1955).

    Article  ADS  Google Scholar 

  2. E. O. Wollan and W. C. Koehler, Phys. Rev. 100, 545 (1955).

    Article  ADS  Google Scholar 

  3. M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998); E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep. 344, 1 (2001).

    Article  ADS  Google Scholar 

  4. K. I. Kugel’ and D. I. Khomskii, Usp. Fiz. Nauk 136, 621 (1982) [Sov. Phys. Usp. 25, 231 (1982)].

    Google Scholar 

  5. I. Solovyev, N. Hamada, and K. Terakura, Phys. Rev. Lett. 76, 4825 (1996).

    Article  ADS  Google Scholar 

  6. G. Khaliullin and V. Oudovenko, Phys. Rev. B 56, R14243 (1997).

  7. I. V. Solovyev and K. Terakura, Phys. Rev. Lett. 83, 2825 (1999).

    Article  ADS  Google Scholar 

  8. J. Van den Brink, P. Horsch, F. Mack, and A. M. Oles, Phys. Rev. B 59, 6795 (1999).

    ADS  Google Scholar 

  9. J. Van den Brink, G. Khaliullin, and D. Khomskii, Phys. Rev. Lett. 83, 5118 (1999).

    ADS  Google Scholar 

  10. E. Saitoh et al., Nature 410, 180 (2001).

    Article  ADS  Google Scholar 

  11. D. L. Huber, G. Alejandro, A. Caneiro, et al., Phys. Rev. B 60, 12155 (1999).

  12. M. V. Zimmermann, J. P. Hill, D. Gibbs, et al., Phys. Rev. Lett. 83, 4872 (1999); H. Kawata, T. Arima, Y. Tokura, et al., Phys. Rev. Lett. 81, 582 (1999).

    ADS  Google Scholar 

  13. J. Kanamori, J. Appl. Phys. (Suppl.) 31, 14S (1960).

    Google Scholar 

  14. A. J. Millis, Phys. Rev. B 53, 8434 (1996).

    Article  ADS  Google Scholar 

  15. L. F. Feiner and A. M. Oles, Phys. Rev. B 59, 3295 (1999); S. Fratini, M. Capone, M. Grilli, and D. Feinberg, in Physics in Local Lattice Distortions, Ed. by H. Oyanagi and A. Bianconi (Am. Inst. Phys., Melville, New York, 2001); AIP Conf. Proc. 554, 371 (2000).

    Article  ADS  Google Scholar 

  16. T. Hotta, S. Yunoki, M. Mayr, and E. Dagotto, Phys. Rev. B 60, R15009 (1999); T. Hotta, Y. Takada, H. Koizumi, and E. Dagotto, Phys. Rev. Lett. 84, 2477 (2000); S. Yunoki, T. Hotta, and E. Dagotto, Phys. Rev. Lett. 84, 3714 (2000).

  17. L. E. Gontchar, A. E. Nikiforov, and S. E. Popov, J. Magn. Magn. Mater. 223, 175 (2001).

    Article  ADS  Google Scholar 

  18. F. Moussa, M. Hennion, J. Rodriguez-Carvajal, et al., Phys. Rev. B 54, 15149 (1996).

    Google Scholar 

  19. K. Hirota, N. Kaneko, A. Nishizawa, and Y. Endoh, J. Phys. Soc. Jpn. 65, 3736 (1996).

    Article  Google Scholar 

  20. J. Q. Li, Y. Matsui, T. Kimura, and Y. Tokura, Phys. Rev. B 57, R3205 (1998).

  21. R. Maezono, S. Ishihara, and N. Nagaosa, Phys. Rev. B 58, 11583 (1998); R. Maezono and N. Nagaosa, Phys. Rev. B 62, 11576 (2000).

  22. T. Mizokawa, D. I. Khomskii, and G. A. Sawatzki, Phys. Rev. B 61, R3776 (2000); T. Mizokawa, D. I. Khomskii, and G. A. Sawatzki, Phys. Rev. B 63, 024403 (2001).

    Google Scholar 

  23. M. Van Veendaal and A. J. Fedro, Phys. Rev. B 59, 1285 (1999).

    ADS  Google Scholar 

  24. P. G. Radaelli, D. E. Cox, M. Marezio, and S.-W. Cheong, Phys. Rev. B 55, 3015 (1997).

    Article  ADS  Google Scholar 

  25. Z. Jirák, C. Martin, M. Hervieu, and J. Hejtmanek, in Reported at International Conference on Neutron Scattering ICNS2001, Munich (see abstract in Conference Programme and Abstracts ICNS2001, Ed. by J. Neuhaus and A. Meyer (2001), p. 146).

  26. J. Blasco, J. Garcia, J. M. de Teresa, et al., J. Phys.: Condens. Matter 9, 10321 (1997).

    Google Scholar 

  27. L. E. Gontchar and A. E. Nikiforov, Czech. J. Phys. (Suppl. A) 52, A245 (2002).

    Google Scholar 

  28. Z. Jirák, S. Krupička, Z. Šimša, et al., J. Magn. Magn. Mater. 53, 153 (1985).

    Article  ADS  Google Scholar 

  29. F. Damay, Z. Jirák, M. Hervieu, et al., J. Magn. Magn. Mater. 190, 221 (1998).

    Article  ADS  Google Scholar 

  30. A. Machida, Y. Moritomo, K. Ohoyama, et al., Phys. Rev. B 62, 80 (2000).

    ADS  Google Scholar 

  31. S. Kawamata, S. Noguchi, K. Okuda, et al., J. Magn. Magn. Mater. 226–230, 854 (2001).

    Google Scholar 

  32. V. E. Naish, Fiz. Met. Metalloved. 92, 5 (2001).

    Google Scholar 

  33. V. E. Naish, Fiz. Met. Metalloved. 92, 16 (2001).

    Google Scholar 

  34. L. É. Gonchar’, A. E. Nikiforov, and S. É. Popov, Zh. Éksp. Teor. Fiz. 118, 1411 (2000) [JETP 91, 1221 (2000)].

    Google Scholar 

  35. A. E. Nikiforov, S. É. Popov, and S. Yu. Shashkin, Fiz. Met. Metalloved. 87, 16 (1999).

    Google Scholar 

  36. O. V. Kovalev, Representations of the Crystallographic Space Groups: Irreducible Representations, Induced Representations, and Corepresentations (Nauka, Moscow, 1986; Gordon and Breach, Yverdon, Switzerland, 1993).

    Google Scholar 

  37. K. S. Aleksandrov, A. T. Anistratov, B. V. Beznosikov, and N. V. Fedoseeva, Phase Transitions in Crystals of Halogenide Compounds (Nauka, Novosibirsk, 1981).

    Google Scholar 

  38. K. Hirota, A. Nishizawa, and Y. Endoh, J. Magn. Magn. Mater. 177–181, 864 (1998).

    Google Scholar 

  39. Y. Tomioka, A. Asamitsu, Y. Morimoto, et al., Phys. Rev. Lett. 74, 5108 (1995).

    Article  ADS  Google Scholar 

  40. S. Krupička, M. Maryško, Z. Jirák, and J. Hejtmanek, J. Magn. Magn. Mater. 206, 45 (1999).

    ADS  Google Scholar 

  41. M. Respaud, J. M. Broto, H. Rakoto, et al., J. Magn. Magn. Mater. 211, 128 (2000).

    Article  ADS  Google Scholar 

  42. J. Lope, P. N. Lisboa-Filho, W. A. C. Passos, et al., J. Magn. Magn. Mater. 226–230, 500 (2001).

    Google Scholar 

  43. A. A. Mukhin, V. Yu. Ivanov, V. D. Travkin, et al., Physica B (Amsterdam) 284–288, 1414 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 123, No. 3, 2003, pp. 575–589.

Original Russian Text Copyright © 2003 by Gonchar’, Nikiforov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonchar’, L.É., Nikiforov, A.E. Antiferromagnetic-resonance spectrum in charge-ordered R0.5Ca0.5MnO3 manganites (R=La, Pr, Tb): The effect of orbital and charge structures. J. Exp. Theor. Phys. 96, 510–522 (2003). https://doi.org/10.1134/1.1567425

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1567425

Keywords

Navigation