Skip to main content
Log in

Spin Wave Spectra in Pseudoperovskite Manganites with Superexchange Interaction Competition

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

In compounds La1/3Ca2/3MnO3 and BiMnO3, a calculation of spin-wave dispersion dependences along pseudoperovskite directions of reciprocal space is made. The model includes orbitally dependent superexchange interaction and single-ion anisotropy. Considered compounds present competing exchange interactions within magnetic unit cell because of orbital or charge-orbital ordering. The nearest neighbor superexchange interaction is taken into account. The magnetic structure and dispersion dependences of spin waves frequencies are calculated within the framework of regular multi-sublattice model. The peculiarities of frustrated magnetic spin-wave spectra are found. It is shown, that crossing and splitting of spin-waves branches in non-symmetric points of magnetic Brillouin zone is a common feature of the spectra due to exchange competition. The band structure of Г-point spectra for both compounds are predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.B. Goodenough, Phys. Rev. 100, 564–573 (1955). https://doi.org/10.1103/PhysRev.100.564

    Article  ADS  Google Scholar 

  2. P.G. Radaelli, D.E. Cox, M. Marezio, S.-W. Cheong, Phys. Rev. B 55, 3015 (1997). https://doi.org/10.1103/PhysRevB.55.3015

    Article  ADS  Google Scholar 

  3. P.G. Radaelli, D.E. Cox, L. Capogna, S.-W. Cheong et al., Phys. Rev. B 59, 14440 (1999). https://doi.org/10.1103/PhysRevB.59.14440

    Article  ADS  Google Scholar 

  4. I. Bersuker, The Jahn-Teller effect (Cambridge University Press, Cambridge, 2006). https://doi.org/10.1017/CBO9780511524769

    Book  Google Scholar 

  5. D.P. Kozlenko, A.A. Belik, S.E. Kichanov et al., Phys. Rev. B 82, 014401 (2010). https://doi.org/10.1103/PhysRevB.82.014401

    Article  ADS  Google Scholar 

  6. P.A. Maksimov, Z. Zhu, S.R. White, A.L. Chernyshev, Phys. Rev. X 9, 021017 (2019). https://doi.org/10.1103/PhysRevX.9.021017

    Article  Google Scholar 

  7. K.-S. Kim, K.H. Lee, S.B. Chung, J.-G. Park, Phys. Rev. B 100, 064412 (2019). https://doi.org/10.1103/PhysRevB.100.064412

    Article  ADS  Google Scholar 

  8. A.V. Mikheyenkov, A.F. Barabanov, V.E. Valiullin, A.V. Shvartsberg, JETP 121(3), 446 (2015). https://doi.org/10.1134/S1063776115090083

    Article  ADS  Google Scholar 

  9. F.A. Kassan-Ogly, A.I. Proshkin, A.K. Murtazaev, V.A. Mutailamov, Phys. Solid State 62(5), 770 (2020). https://doi.org/10.1134/S1063783420050121

    Article  ADS  Google Scholar 

  10. L.E. Gonchar, J. Magn. Magn. Mat. 513, 167248 (2020). https://doi.org/10.1016/j.jmmm.2020.167248

    Article  Google Scholar 

  11. L.E. Gonchar, Journ. Magn. Magn. Mat. 465, 661 (2018). https://doi.org/10.1016/j.jmmm.2018.06.012

    Article  ADS  Google Scholar 

  12. J. Deisenhofer, M.V. Eremin, D.V. Zakharov, V.A. Ivanshin et al., Phys. Rev. B 65, 104440 (2002). https://doi.org/10.1103/PhysRevB.65.104440

    Article  ADS  Google Scholar 

  13. I.V. Solovyev, Phys. Rev. B 90, 024417 (2014). https://doi.org/10.1103/PhysRevB.90.024417

    Article  ADS  Google Scholar 

  14. L.E. Gonchar, Low Temp. Phys. 48, 37 (2022). https://doi.org/10.1063/10.0008962

    Article  ADS  Google Scholar 

  15. L.E. Gonchar, Phys. Solid State 61(5), 728 (2019). https://doi.org/10.1134/S1063783419050093

    Article  ADS  Google Scholar 

  16. L.E. Gonchar, J. Phys. 1389, 012138 (2019). https://doi.org/10.1088/1742-6596/1389/1/012138

    Article  Google Scholar 

  17. A.A. Mozhegorov, L.E. Gontchar, A.E. Nikiforov, Appl. Magn. Reson. 33, 167 (2008). https://doi.org/10.1007/s00723-008-0063-2

    Article  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

L.E. Gonchar as a single author has made calculation, wrote the manuscript text and prepared all Figures.

Corresponding author

Correspondence to Liudmila E. Gonchar.

Ethics declarations

Conflict of Interest

The author declares that she has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonchar, L.E. Spin Wave Spectra in Pseudoperovskite Manganites with Superexchange Interaction Competition. Appl Magn Reson 54, 503–511 (2023). https://doi.org/10.1007/s00723-023-01532-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-023-01532-z

Navigation