Skip to main content
Log in

Smoothing of interfacial micron-scale roughness in a Ni/C X-ray multilayer mirror

  • Atoms, Spectra, Radiations
  • Published:
Journal of Experimental and Theoretical Physics Letters Aims and scope Submit manuscript

Abstract

Correlation between the roughness of neighboring interfaces (roughness cross correlation) in a Ni/C X-ray multilayer mirror (XMM) prepared by laser ablation was studied by measuring X-ray diffuse scattering (XDS). The XDS intensities in the vicinity of the first Bragg reflection were measured at different photon energies: slightly below (8.325 keV) and slightly above (8.350 keV) the nickel photoabsorption K edge. The effective screening of the contribution from the deep layers to the XDS cross section due to the strong damping of the wave field at a photon energy higher than the photoabsorption edge allowed information on the character of the in-depth roughness cross correlation in the sample to be obtained. In particular, the characteristic lateral correlation length of the roughness was 0.35 µm at a photon energy of 8.325 keV (the contribution to the XDS cross section of the entire XMM volume), and it increased to 0.4 µm at a photon energy of 8.350 keV (predominantly the contribution from the upper layers). These data give direct evidence for the mechanism of smoothing of the interfacial roughness in the process of Ni/C XMM growth on anomalously large (up to micron) spatial scales. It was found that only rough large-scale defects with sizes of ≥10 µm are reproduced reasonably well from layer to layer. The processes of viscous flow and (or) reevaporation of high-energy target ions during deposition, which is characteristic of the laser method of XMM preparation, may serve as a possible explanation of the observed phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. W. Barbee, Opt. Eng. 25, 893 (1986).

    Google Scholar 

  2. S. V. Gaponov, F. V. Garin, S. A. Gusev, et al., Nucl. Instrum. Methods Phys. Res. 208, 227 (1983).

    Article  Google Scholar 

  3. E. Spiller, A. Segmuller, J. Rife, et al., Appl. Phys. Lett. 37, 1048 (1980).

    Article  ADS  Google Scholar 

  4. E. Spiller, Appl. Phys. Lett. 54, 2293 (1989).

    Article  ADS  Google Scholar 

  5. M. P. Bruijn, P. Chakraborty, H. W. van Essen, et al., Proc. SPIE 563, 36 (1985).

    Google Scholar 

  6. E. J. Puik, M. J. van der Wiel, H. Zeijlemarker, et al., Rev. Sci. Instrum. 63, 1415 (1992).

    Article  ADS  Google Scholar 

  7. D. G. Stearns, J. Appl. Phys. 71, 4286 (1992).

    ADS  Google Scholar 

  8. S. F. Edwards and D. R. Wilkinson, Proc. R. Soc. London, Ser. A 381, 17 (1982).

    ADS  MathSciNet  Google Scholar 

  9. D. G. Stearns, Appl. Phys. Lett. 62, 1745 (1993).

    Article  ADS  Google Scholar 

  10. E. Spiller, D. Stearns, and M. Krumrey, J. Appl. Phys. 74, 107 (1993).

    Article  ADS  Google Scholar 

  11. R. Schlatmann, J. D. Shindler, and J. Verhoeven, Phys. Rev. B 54, 10880 (1996).

    Google Scholar 

  12. V. A. Bushuev and V. V. Kozak, Kristallografiya 42, 809 (1997) [Crystallogr. Rep. 42, 742 (1997)].

    Google Scholar 

  13. V. A. Bushuev and V. V. Kozak, Poverkhnost’, No. 2, 96 (1999).

  14. A. V. Andreev, A. G. Michette, and A. Renwick, J. Mod. Opt. 35, 1667 (1988).

    ADS  Google Scholar 

  15. A. Bruson, C. Dufour, B. George, et al., Solid State Commun. 71, 1045 (1989).

    Article  Google Scholar 

  16. D. E. Savage, N. Schimke, Y.-H. Phang, et al., J. Appl. Phys. 71, 3283 (1992).

    Article  ADS  Google Scholar 

  17. V. Holy and T. Baumbach, Phys. Rev. B 49, 10668 (1994).

    ADS  Google Scholar 

  18. I. Pape, T. P. A. Hase, B. K. Tanner, et al., Physica B (Amsterdam) 253, 278 (1998).

    ADS  Google Scholar 

  19. H. Laidler, I. Pape, C. I. Gregory, et al., J. Magn. Magn. Mater. 154, 165 (1996).

    Article  ADS  Google Scholar 

  20. V. E. Asadchikov, A. Yu. Karabekov, V. V. Klechkovskaya, et al., Kristallografiya 43, 119 (1998) [Crystallogr. Rep. 43, 110 (1998)].

    Google Scholar 

  21. V. A. Chernov, N. I. Chkhalo, M. V. Fedorchenko, et al., J. X-Ray Sci. Technol. 5, 65 (1995).

    Google Scholar 

  22. A. I. Volokhov, É. P. Kruglyakov, and N. I. Chkhalo, Poverkhnost’, No. 1, 130 (1999).

  23. L. G. Parratt, Phys. Rev. 95, 359 (1954).

    Article  ADS  Google Scholar 

  24. V. A. Chernov, N. I. Chkhalo, M. V. Fedorchenko, et al., J. X-Ray Sci. Technol. 5, 389 (1995).

    Google Scholar 

  25. V. A. Chernov, N. I. Chkhalo, and S. G. Nikitenko, J. Phys. IV 7, C2–699 (1997).

    Google Scholar 

  26. V. A. Chernov, E. D. Chkhalo, N. V. Kovalenko, et al., Nucl. Instrum. Methods Phys. Res. A 448, 276 (2000).

    ADS  Google Scholar 

  27. Brief Description of the SR Experimental Station, Preprint No. 90-92 (Novosibirsk Inst. of Nuclear Physics, Siberian Div., USSR Academy of Sciences, 1990).

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Pis’ma v Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 77, No. 2, 2003, pp. 85–88.

Original Russian Text Copyright © 2003 by Kovalenko, Mytnichenko, Chernov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovalenko, N.V., Mytnichenko, S.V. & Chernov, V.A. Smoothing of interfacial micron-scale roughness in a Ni/C X-ray multilayer mirror. Jetp Lett. 77, 80–83 (2003). https://doi.org/10.1134/1.1564224

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1564224

PACS numbers

Navigation