Skip to main content
Log in

Interactions of surface states of copper with transition metals and cesium

  • Low-Dimensional Systems and Surface Physics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The pseudopotential augmented-plane-wave method was used to study the surface structure of thin copper films with monolayers of Co, Ni, and Cs. Local densities of electron states, distributions of charge densities in the layers, and electron energy spectra are analyzed. The effect of adsorbates on the electronic properties of the Cu(001) surface and work function are discussed. Satisfactory agreement with available experimental data has been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Jepsen, J. Madsen, and O. K. Andersen, Phys. Rev. B 26(6), 2790 (1982).

    Article  ADS  Google Scholar 

  2. S. Ohnishi, A. J. Freeman, and M. Weinert, Phys. Rev. B 28(12), 6741 (1983).

    Article  ADS  Google Scholar 

  3. C. L. Fu and A. J. Freeman, Phys. Rev. B 33(3), 1755 (1986).

    ADS  Google Scholar 

  4. C. L. Fu and A. J. Freeman, J. Magn. Magn. Mater. 69(1), L1 (1987).

    Article  ADS  Google Scholar 

  5. Chun Li, A. J. Freeman, and C. L. Fu, J. Magn. Magn. Mater. 75(1), 53 (1988).

    Article  ADS  Google Scholar 

  6. R. Pencheva and M. Scheffler, Phys. Rev. B 61(3), 2211 (2000).

    ADS  Google Scholar 

  7. M. Eder, J. Hafner, and E. G. Moroni, Phys. Rev. B 61(17), 11492 (2000).

  8. P. Scheffer, C. Krembel, M. C. Hanf, and G. Gewinner, Surf. Sci. 400(1), 95 (1998).

    Google Scholar 

  9. S. Blugel and P. Dederichs, Europhys. Lett. 9(6), 597 (1989).

    ADS  Google Scholar 

  10. S. Blugel, Appl. Phys. A: Mater. Sci. Process. 63(7), 595 (1996).

    ADS  Google Scholar 

  11. D. Spisak and J. Hafner, J. Phys.: Condens. Matter 12(7), L139 (2000).

    ADS  Google Scholar 

  12. M. Wuttig, Y. Gauthier, and S. Blugel, Phys. Rev. Lett. 70(23), 3619 (1993).

    Article  ADS  Google Scholar 

  13. D. Spisak and J. Hafner, Phys. Rev. B 61(6), 4160 (2000).

    ADS  Google Scholar 

  14. O. Rader, W. Gudat, C. Carbone, et al., Phys. Rev. B 55(8), 5404 (1997).

    Article  ADS  Google Scholar 

  15. D. Spisak and J. Hafner, J. Phys.: Condens. Matter 11(33), 6359 (1999).

    ADS  Google Scholar 

  16. S. Meza-Aguilar, O. Elmouhssine, H. Dreysse, and C. Demangeat, Comput. Mater. Sci. 17(6), 464 (2000).

    Google Scholar 

  17. H. P. Bonzel, Surf. Sci. 43(1), 8 (1988).

    Google Scholar 

  18. P. Soukiassian, R. Riwan, J. Lecante, et al., Phys. Rev. B 31(8), 4911 (1985).

    Article  ADS  Google Scholar 

  19. N. D. Lang and W. Kohn, Phys. Rev. B 3(4), 1215 (1971).

    Article  ADS  Google Scholar 

  20. E. Wimmer, A. J. Freeman, J. R. Hiskes, and A. M. Karo, Phys. Rev. B 28(6), 3074 (1983).

    Article  ADS  Google Scholar 

  21. S. R. Chubb, E. Wimmer, A. J. Freeman, et al., Phys. Rev. B 36(8), 4112 (1987).

    Article  ADS  Google Scholar 

  22. Ning Wang, K. Chen, and Ding-Sheng Wang, Phys. Rev. Lett. 56(25), 2759 (1986).

    Google Scholar 

  23. Ru-Gian Wu and Ding Sheng Wang, Phys. Rev. B 41(1), 18 (1990).

    Google Scholar 

  24. A. Eichler, J. Hafner, and G. Kresse, J. Phys.: Condens. Matter 8(40), 7659 (1996).

    ADS  Google Scholar 

  25. Kim Jai Sam, G. Lee, Y. M. Koo, et al., Int. J. Hydrogen Energy 27(4), 403 (2002).

    Google Scholar 

  26. P. Blaha, K. Schwarz, and J. Luitz, WIEN97 (Vienna Univ. of Technology, 1997); P. Blaha, K. Schwarz, P. Sorantin, and S. B. Trickey, Comput. Phys. Commun. 59 (5), 399 (1990) (improved and updated Unix version of the origin copyrighted WIEN-code).

  27. Q. T. Jiang, P. Fenter, and T. Gustafsson, Phys. Rev. B 44(11), 5773 (1991).

    Article  ADS  Google Scholar 

  28. P. O. Gartland, S. Berge, and B. J. Slagsvold, Phys. Rev. Lett. 28(12), 738 (1972).

    Article  ADS  Google Scholar 

  29. G. A. Hass and R. E. Thomas, J. Appl. Phys. 48(1), 86 (1977).

    ADS  Google Scholar 

  30. G. G. Tibbets, J. M. Burkstrand, and J. C. Tracy, Phys. Rev. B 15(8), 3652 (1977).

    ADS  Google Scholar 

  31. S. H. Kim, K. S. Lee, H. G. Min, et al., Phys. Rev. B 55(12), 7904 (1997).

    Article  ADS  Google Scholar 

  32. P. Srivastova, F. Wilhelm, A. Ney, et al., Phys. Rev. B 58(9), 5701 (1998).

    ADS  Google Scholar 

  33. S. V. Mankovsky, A. A. Ostroukhov, V. M. Floka, and V. T. Tcherepin, Vacuum 48(3), 245 (1997).

    Google Scholar 

  34. S. E. Kulkova, D. V. Valujsky, Kim Jai Sam, et al., Phys. Rev. B 65(8), 85410 (2002).

  35. Theory of Chemisorption, Ed. by J. R. Smith (Springer, Berlin, 1980; Mir, Moscow, 1983).

    Google Scholar 

  36. R. Eibler, H. Erschbaumer, C. Temnitschka, et al., Surf. Sci. 280(5), 398 (1993).

    Google Scholar 

  37. Tables of Physical Data: Reference Book, Ed. by I. K. Kikoin (Atomizdat, Moscow, 1976), p. 444.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 45, No. 3, 2003, pp. 559–566.

Original Russian Text Copyright © 2003 by Chudinov, Kul’kova, Smolin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chudinov, D.V., Kul’kova, S.E. & Smolin, I.Y. Interactions of surface states of copper with transition metals and cesium. Phys. Solid State 45, 590–597 (2003). https://doi.org/10.1134/1.1562252

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1562252

Keywords

Navigation