Skip to main content
Log in

Local effect of electric and magnetic fields on the position of an attached shock in a supersonic diffuser

  • Gases and Liquids
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Effective ways for controlling shock wave configurations by means of external actions are sought. One such way is a local effect of electric and magnetic fields. In this paper, the local effect of external fields is implemented by current localization in a limited region of a diffuser. The experiment is carried out in a diffuser providing the complete internal compression of the gas with a Mach number at the inlet M=4.3. As a working medium, a xenon plasma is used. The plasma flow is formed in a shock tube equipped with an accelerating nozzle. Two ways of current localization are tested. In the first one, the diffuser inlet is a short channel of Faraday generator type. In this case, the ponderomotive force basically decelerates or accelerates the flow depending on the direction of the electric field. In the second way, the current flows through a narrow near-wall region between adjacent electrodes. In this case, the ponderomotive force compresses or expands the gas. In both cases, it is shown that the angle of an attached shock due to MHD interaction can be both decreased and increased. The central problem with the MHD control of shock waves is near-electrode and near-wall phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. P. Gurijanov and P. T. Harsha, in Proceedings of 7th Aerospace Planes and Hypersonic Technology Conference, Norfolk, 1996 (AIAA Pap. 96-4609, 1996).

  2. V. L. Fraishtad, A. L. Kuranov, and E. G. Sheikin, Zh. Tekh. Fiz. 68(11), 43 (1998) [Tech. Phys. 43, 1309 (1998)].

    Google Scholar 

  3. Yu. P. Golovachev, A. A. Schmidt, and S. Yu. Suschikh, in Proceedings of 2nd Workshop on Magneto-Plasma-Aerodynamics in Aerospace Applications (Inst. Vys. Temp. Ross. Akad. Nauk, Moscow, 2000).

    Google Scholar 

  4. A. Vatazhin, V. Kopchenov, and O. Goushkov, in Proceedings of 2nd Workshop on Magneto-Plasma-Aerodynamics in Aerospace Applications (Inst. Vys. Temp. Ross. Akad. Nauk, Moscow, 2000), p. 64.

    Google Scholar 

  5. D. I. Brichkin, A. L. Kuranov, and E. G. Sheikin, in Proceedings of 8th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Norfolk, 1998 (AIAA Pap. 98-1642, 1998).

  6. Yu. P. Golovachev and S. Yu. Sushikh, Zh. Tekh. Fiz. 70(2), 28 (2000) [Tech. Phys. 45, 168 (2000)].

    Google Scholar 

  7. S. O. Macheret, M. N. Shneider, and R. B. Miles, in Proceedings of 39th Aerospace Sciences Meeting and Exhibition, Reno, 2001 (AIAA Pap. 2001-0492, 2001).

  8. V. A. Bityurin, J. T. Lineberry, V. G. Potebnia, et al., in Proceedings of 28th AIAA Plasmadynamics and Lasers Conference, Atlanta, 1997 (AIAA Paper 97-2393, 1997).

  9. S. V. Bobashev, E. A. D’yakonova, A. V. Erofeev, et al., AIAA Pap. 2000-2647 (2000).

  10. S. V. Bobashev, R. V. Vasil’eva, E. A. D’yakonova, et al., Pis’ma Zh. Tekh. Fiz. 27(2), 63 (2001) [Tech. Phys. Lett. 27, 71 (2001)].

    Google Scholar 

  11. S. V. Bobashev, A. V. Erofeev, T. A. Lapushkina, et al., in Proceedings of 3rd Workshop on Magneto-Plasma-Aerodynamics in Aerospace Applications (Inst. Vys. Temp. Ross. Akad. Nauk, Moscow, 2001).

    Google Scholar 

  12. T. A. Lapushkina, S. V. Bobashev, R. V. Vasil’eva, et al., Zh. Tekh. Fiz. 72(4), 23 (2002) [Tech. Phys. 47, 397 (2002)].

    Google Scholar 

  13. S. V. Bobashev, A. V. Erofeev, T. A. Lapushkina, et al., in Proceedings of 32nd AIAA Plasmadynamics and Lasers Conference, 4th Weakly Ionized Gases Workshop, Anaheim, 2001 (AIAA Pap. 2001-2878, 2001).

  14. L. M. Biberman, V. S. Vorob’ev, and I. T. Yakubov, Kinetics of Nonequilibrium Low-Temperature Plasmas (Nauka, Moscow, 1982; Consultants Bureau, New York, 1987).

    Google Scholar 

  15. R. V. Vasil’eva, A. L. Genkin, V. L. Goryachev, A. V. Erofeev, A. D. Zuev, D. N. Mironov, A. S. Remennyi, and N. A. Silin, Low-Temperature Plasma of Inert Gases with Nonequilibrium Ionization and MHD Generators (Nauka, St. Petersburg, 1991).

    Google Scholar 

  16. N. N. Ogurtsova, I. V. Podmoshenskii, and N. I. Demidov, Opt. Mekh. Prom. 1(1) (1960).

  17. L. A. Vulis, A. L. Genkin, and V. A. Fomenko, The Theory and Analysis of Magnetohydrodynamic Flows in Channels (Atomizdat, Moscow, 1971).

    Google Scholar 

  18. Yu. P. Raizer, The Physics of Gas Discharge (Nauka, Moscow, 1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Tekhnichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 73, No. 2, 2003, pp. 43–50.

Original Russian Text Copyright © 2003 by Bobashev, Vasil’eva, Erofeev, Lapushkina, Poniaev, Van Wie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bobashev, S.V., Vasil’eva, R.V., Erofeev, A.V. et al. Local effect of electric and magnetic fields on the position of an attached shock in a supersonic diffuser. Tech. Phys. 48, 177–184 (2003). https://doi.org/10.1134/1.1553557

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1553557

Keywords

Navigation