Skip to main content
Log in

Theoretical investigation of supersonic flow control by nonthermal DC discharge

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

This work describes a theoretical study on shock wave modification by the electrical discharge generated with a DC voltage. Weakly ionized and high-density assumptions for nonthermal plasma were examined to demonstrate heat and momentum transfer contributions in supersonic flow control. The momentum equation for the plasma electrons and ions was considered to evaluate the changes in the incident flow velocity by the plasma. The change in the incident flow temperature was studied by applying source terms arising from a weakly ionized and high-density plasma to the energy equation. It was concluded that the momentum transfer from a nonthermal plasma into the incoming supersonic flow was responsible for the increasing shock wave angle. On the other hand, a nonthermal plasma with a remarkably high ionization degree increases the incident flow temperature drastically, while a weakly ionized plasma has a negligible effect on flow temperature. Our numerical results show that the electric field distribution has a significant role in the plasma flow control mechanisms, suggesting a new tailoring parameter via cathode geometry. The results of this work are in good agreement with respective experimental validation data and can be used in plasma-based shock wave control apparatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Raj, P., Mirandat, L.R., Seebass, A.R.: A cost-effective method for shock-free supercritical wing design. J. Aircr. 19(4), 283–289 (1982). https://doi.org/10.2514/3.57391

    Article  Google Scholar 

  2. Bur, R., Corbel, B., Délery, J.: Study of passive control in a transonic shock wave/boundary-layer interaction. AIAA J. 36(3), 394–400 (1998). https://doi.org/10.2514/2.376

    Article  Google Scholar 

  3. Reneaux, J., Coustols, E.: Wave drug reduction technologies. Presented at the ONERA DLR Aerospace Symposium, Paris (1999)

  4. Dufour, G., Rogier, F.: Numerical modeling of dielectric barrier discharge based plasma actuators for flow control: the COPAIER/CEDRE example. Aerosp. Lab J. 10, 1–13 (2015). https://doi.org/10.12762/2015.AL10-05

    Google Scholar 

  5. Chedevergne, F., Casalis, G., Léon, O., Forte, M., Laurendeau, F., Szulga, N., Vermeersch, O., Piot, E.: Applications of dielectric barrier discharges and plasma synthetic jet actuators at ONERA. Aerosp. Lab J. 10, 1–10 (2015). https://doi.org/10.12762/2015.AL10-06

    Google Scholar 

  6. Fomin, V.M., Tretyakov, P.K., Taran, J.P.: Flow control using various plasma and aerodynamic approaches (short review). Aerosp. Sci. Technol. 8(5), 411–421 (2004). https://doi.org/10.1016/j.ast.2004.01.005

    Article  Google Scholar 

  7. Bletzinger, P., Ganguly, B.N., Van Wie, D., Garscadden, A.: Plasmas in high speed aerodynamics. J. Phys. D: Appl. Phys. 38(4), R33 (2005). https://doi.org/10.1088/0022-3727/38/4/R01

    Article  Google Scholar 

  8. Moreau, E.: Airflow control by non-thermal plasma actuators. J. Phys. D: Appl. Phys. 40(3), 605 (2007). https://doi.org/10.1088/0022-3727/40/3/S01

    Article  Google Scholar 

  9. Leonov, S.B.: Review of plasma-based methods for high-speed flow control. AIP Conf. Proc. 1376, 498–502 (2011). https://doi.org/10.1063/1.3651958

    Article  Google Scholar 

  10. Wang, L., Luo, Z.B., Xia, Z.X., Liu, B., Deng, X.: Review of actuators for high speed active flow control. Sci. China Technol. Sci. 55(8), 2225–2240 (2012). https://doi.org/10.1007/s11431-012-4861-2

    Article  Google Scholar 

  11. Mishin, G., Mishin, G.: Experimental investigation of the flight of a sphere in weakly ionized air. In: 15th Applied Aerodynamics Conference, AIAA Paper 1997-2298 (1997). https://doi.org/10.2514/6.1997-2298

  12. Mishin, G.I., Serov, YuL, Yavor, I.P.: Flow around a sphere moving supersonically in a gas discharge plasma. Sov. Tech. Phys. Lett. 17, 413–416 (1991)

    Google Scholar 

  13. Wang, J., Li, Y., Xing, F.: Investigation on oblique shock wave control by arc discharge plasma in supersonic airflow. J. Appl. Phys. 106(7), 073307 (2009). https://doi.org/10.1063/1.3236658

    Article  Google Scholar 

  14. Shneider, M.N.: Energy addition into hypersonic flow for drag reduction and steering. In: Atmospheric Pressure Weakly Ionized Plasmas for Energy Technologies, Flow Control and Materials Processing, 22–24 August 2011, Princeton (2011)

  15. Satheesh, K., Jagadeesh, G.: Experimental investigations on the effect of energy deposition in hypersonic blunt body flow field. Shock Waves 18, 53–70 (2008). https://doi.org/10.1007/s00193-008-0140-3

    Article  Google Scholar 

  16. Cai, C., He, X.: Energy deposition/extraction effects on oblique shock waves over a wedge. AIAA J. 45(9), 2267–2272 (2007). https://doi.org/10.2514/1.28920

    Article  Google Scholar 

  17. Kulkarni, V., Hegde, G.M., Jagadeesh, G., Arunan, E., Reddy, K.P.J.: Aerodynamic drag reduction by heat addition into the shock layer for a large angle blunt cone in hypersonic flow. Phys. Fluids 20, 081703 (2008). https://doi.org/10.1063/1.2944982

    Article  MATH  Google Scholar 

  18. Yu, F.M., Lin, M.S.: Investigation of a planar shock on a body loaded with low temperature plasmas. Shock Waves 2, 1425–1430 (2009). https://doi.org/10.1007/978-3-540-85181-3_102

    Article  Google Scholar 

  19. Marconi, F.: An investigation of tailored upstream heating for sonic boom and drag reduction. AIAA Paper 1998-333 (1998). https://doi.org/10.2514/6.1998-333

  20. Riggins, D., Nelson, H.F., Johnson, E.: Blunt-body wave drag reduction using focused energy deposition. AIAA J. 37(4), 460–467 (1999). https://doi.org/10.2514/2.756

    Article  Google Scholar 

  21. Kremeyer, K., Sebastian, K.A., Shu, C.-W.: Computational study of shock mitigation and drag reduction by pulsed energy lines. AIAA J. 44(8), 1720–1731 (2006). https://doi.org/10.2514/1.17854

    Article  Google Scholar 

  22. Miles, R.B., Macheret, S.O., Martinelli, L., Murray, R., Shneider, M., Ionikh, Y.Z.: Plasma control of shock waves in aerodynamics and sonic boom mitigation. Proceedings of the 32nd AIAA Plasmadynamics and Lasers Conference, AIAA Paper 2001-3062 (2001). https://doi.org/10.2514/6.2001-3062

  23. Khorunzehenko, V., Roupassov, D., Starikovskii, A.: Hypersonic flow and shock wave structure control by low temperature nonequilibrium plasma of gas discharge. AIAA Paper 2002-3569 (2002). https://doi.org/10.2514/6.2002-3569

  24. Bœuf, J.P., Pitchford, L.C.: Electrohydrodynamic force and aerodynamic flow acceleration in surface dielectric barrier discharge. J. Appl. Phys. 97, 103307 (2005). https://doi.org/10.1063/1.1901841

    Article  Google Scholar 

  25. Boeuf, J.P., Lagmich, Y., Unfer, T., Callegari, T., Pitchford, L.C.: Electrohydrodynamic force in dielectric barrier discharge plasma actuators. J. Phys. D: Appl. Phys. 40(3), 652–662 (2007). https://doi.org/10.1088/0022-3727/40/3/S03

    Article  Google Scholar 

  26. Unfer, T., Boeuf, J.P.: Modelling of a nanosecond surface discharge actuator. J. Phys. D: Appl. Phys. 42, 194017 (2009). https://doi.org/10.1088/0022-3727/42/19/194017

    Article  Google Scholar 

  27. Kuo, S.P., Kalkhoran, I.M., Bivolaru, D., Orlick, L.: Observation of shock wave elimination by a plasma in a Mach-2.5 flow. Phys. Plasmas 7(5), 1345–1348 (2000). https://doi.org/10.1063/1.873776

    Article  Google Scholar 

  28. Kuo, S.P., Bivolaru, D.: Plasma effect on shock waves in a supersonic flow. Phys. Plasmas 8(7), 3258 (2001). https://doi.org/10.1063/1.1376422

    Article  Google Scholar 

  29. Kuo, S.P.: Conditions and a physical mechanism for plasma mitigation of shock wave in a supersonic flow. Phys. Scr. 70, 161–165 (2004). https://doi.org/10.1088/0031-8949/70/2-3/014

    Article  Google Scholar 

  30. Kuo, S.P., Kuo, S.S.: A physical mechanism of nonthermal plasma effect on shock wave. Phys. Plasmas 12, 012315 (2005). https://doi.org/10.1063/1.1829295

    Article  Google Scholar 

  31. Kuo, S.P.: Shock wave modification by a plasma spike: experiment and theory. Phys. Scr. 71, 535–539 (2005). https://doi.org/10.1238/Physica.Regular.071a00535

    Article  Google Scholar 

  32. Kuo, S.P.: Plasma mitigation of shock wave: experiments and theory. Shock Waves 17, 225–239 (2007). https://doi.org/10.1007/s00193-007-0112-z

    Article  Google Scholar 

  33. Shin, J., Clemens, N.T., Raja, L.L.: Schlieren imaging of flow actuation produced by direct-current surface glow discharge in supersonic flows. IEEE Trans. Plasma Sci. 36(4), 1316–1317 (2008). https://doi.org/10.1109/TPS.2008.926854

    Article  Google Scholar 

  34. Raizer, Yu.P.: Gas Discharge Physics. Springer, Berlin (1991)

  35. Surzhikov, S.T.: Computational Physics of Electric Discharges in Gas Flows, vol. 7. Walter de Gruyter, Berlin (2013)

    MATH  Google Scholar 

  36. Anderson Jr., J.D.: Modern Compressible Flow. McGraw-Hill, New York (1990)

    Google Scholar 

  37. Burm, K.T.A.L., Goedheer, W.J., Schram, D.C.: The isentropic exponent in plasmas. Phys. Plasmas 6(6), 2622–2627 (1999). https://doi.org/10.1063/1.873535

    Article  Google Scholar 

  38. Moisan, M., Pelletier, J.: Physics of Collisional Plasmas. Springer, Berlin (2006). https://doi.org/10.1007/978-94-007-4558-2

    Google Scholar 

  39. Menier, E., Leger, L., Depussay, E., Lago, V., Artana, G.: Effect of a DC discharge on the supersonic rarefied air flow over a flat plate. J. Phys. D: Appl. Phys. 40, 695–701 (2007). https://doi.org/10.1088/0022-3727/40/3/S07

    Article  Google Scholar 

  40. Yano, R., Contini, V., Ploenjes, E., Palm, P., Merriman, S., Aihal, S., Adamovich, I., Lempert, W., Subramaniam, V., Rich, J.W.: Supersonic nonequilibrium plasma wind-tunnel measurements of shock modification and flow visualization. AIAA J. 38(10), 1879–1888 (2000). https://doi.org/10.2514/2.841

    Article  Google Scholar 

  41. Merriman, S., Ploenjes, E., Palm, P., Adamovich, I.V.: Shock wave control by nonequilibrium plasmas in cold supersonic gas flows. AIAA J. 39(8), 1547–1552 (2001). https://doi.org/10.2514/2.1479

    Article  Google Scholar 

  42. Leonov, S., Bityurin, V., Savelkin, K., Yarantsev, D.: Effect of electrical discharge on separation processes and shocks position in supersonic airflow. In: 40th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA Paper 2002-355 (2002). https://doi.org/10.2514/6.2002-355

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Sohbatzadeh.

Additional information

Communicated by A. Higgins.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohbatzadeh, F., Mehdipoor, M. & Mirzanejhad, S. Theoretical investigation of supersonic flow control by nonthermal DC discharge. Shock Waves 29, 415–426 (2019). https://doi.org/10.1007/s00193-018-0830-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-018-0830-4

Keywords

Navigation