Skip to main content
Log in

Generalization of the Hecke theorem for the nonlinear Boltzmann collision integral in the axisymmetric case

  • Theoretical and Mathematical Physics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The properties of the nonlinear collision integral in the Boltzmann equation are studied. Expansions in spherical Hermitean polynomials are used. It was shown [1] that the nonlinear matrix elements of the collision operator are related to each other by simple expressions, which are valid for arbitrary cross sections of particle interaction. The structure of the collision operator and the properties of the matrix elements are studied for the case when the interaction potential is spherically symmetric. In this case, the linear Boltzmann operator satisfies the Hecke theorem. The generalized Hecke theorem, from which it follows that many nonlinear matrix elements vanish, is proved with recurrence relations derived. It is shown that the generalized Hecke theorem is a consequence of the ordinary Hecke theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ya. Énder and I. A. Énder, Zh. Tekh. Fiz. 72(5), 1 (2002) [Tech. Phys. 47, 513 (2002)].

    Google Scholar 

  2. A. Ya. Énder and I. A. Énder, Zh. Tekh. Fiz. 69(6), 22 (1999) [Tech. Phys. 44, 628 (1999)].

    Google Scholar 

  3. A. Yu. Ender and I. A. Ender, Phys. Fluids 11, 2720 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  4. E. Hecke, Math. Ann. 78, 398 (1917).

    MATH  MathSciNet  Google Scholar 

  5. E. Hecke, Math. Z. 12, 274 (1922).

    Article  MATH  MathSciNet  Google Scholar 

  6. K. Kumar, Ann. Phys. (N.Y.) 37, 113 (1966).

    Article  MATH  Google Scholar 

  7. S. Chapman and T. G. Cowling, Mathematical Theory of Non-Uniform Gases, 2nd ed. (Cambridge Univ. Press, Cambridge, 1952; Inostrannaya Literatura, Moscow, 1960).

    Google Scholar 

  8. D. Burnett, Proc. London Math. Soc. 39, 385 (1935).

    MATH  Google Scholar 

  9. D. Burnett, Proc. London Math. Soc. 40 (1935).

  10. H. Grad, Commun. Pure Appl. Math. 2, 311 (1949).

    Google Scholar 

  11. L. Sirovich, Phys. Fluids 6(1), 10 (1963).

    Article  MATH  MathSciNet  Google Scholar 

  12. I. A. Énder and A. Ya. Énder, Dokl. Akad. Nauk SSSR 193(1), 61 (1970) [Sov. Phys. Dokl. 15, 633 (1971)]; Phys. Fluids 6 (1), 10 (1963).

    Google Scholar 

  13. A. Ya. Énder, Zh. Tekh. Fiz. 62(1), 20 (1992) [Sov. Phys. Tech. Phys. 37, 9 (1992)].

    Google Scholar 

  14. D. Hilbert, Math. Ann. 72, 562 (1912).

    Article  MATH  MathSciNet  Google Scholar 

  15. I. Talmi, Helv. Phys. Acta 25, 185 (1952).

    MATH  Google Scholar 

  16. Yu. F. Smirnov, Nucl. Phys. 27, 177 (1961).

    Google Scholar 

  17. V. V. Vedenyapin, Preprint No. 38, IPM AN SSSR (Inst. of Applied Mathematics, USSR Academy of Sciences, 1981).

  18. D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum (Nauka, Leningrad, 1975; World Sci., Singapore, 1988).

    Google Scholar 

  19. E. M. Hendrics and T. M. Nieuwenhuizen, J. Stat. Phys. 29(3), 591 (1982).

    Google Scholar 

  20. V. V. Vedenyapin, Dokl. Akad. Nauk SSSR 256, 338 (1981) [Sov. Phys. Dokl. 26, 26 (1981)].

    ADS  MathSciNet  Google Scholar 

  21. A. Ya. Énder and I. A. Énder, Aerodynamics of Rarefied Gases (Leningrad, 1983), pp. 197–215.

  22. A. Ya. Énder, I. A. Énder, and M. B. Lyutenko, Preprint No. 1748, FTI RAN (Physicotechnical Inst., Russian Academy of Sciences, St. Petersburg, 2000).

  23. J. H. Ferziger and H. G. Kaper, Mathematical Theory of Transport in Gases (North-Holland, Amsterdam, 1972; Mir, Moscow, 1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Tekhnichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 73, No. 2, 2003, pp. 6–12.

Original Russian Text Copyright © 2003 by A. Énder, I. Énder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Énder, A.Y., Énder, I.A. Generalization of the Hecke theorem for the nonlinear Boltzmann collision integral in the axisymmetric case. Tech. Phys. 48, 138–145 (2003). https://doi.org/10.1134/1.1553552

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1553552

Keywords

Navigation