Skip to main content
Log in

The collision integral kernels of the scalar nonlinear Boltzmann equation for pseudopower potentials

  • Theoretical and Mathematical Physics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Analytic expressions are obtained for the collision integral kernels of the isotropic nonlinear Boltzmann equation for pseudopower interaction potentials. It is shown that for an arbitrary power exponent, the kernels can be expressed in terms of hypergeometric functions. In some cases, the kernels can be expressed in terms of elementary functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Bobylev, Dokl. Akad. Nauk SSSR 225, 1041 (1975).

    ADS  MathSciNet  Google Scholar 

  2. M. Krook and T. T. Wu, Phys. Fluids 20, 1589 (1977).

    Article  ADS  MATH  Google Scholar 

  3. M. Barnsley and G. Turchetti, Lett. Nuovo Cimento 30, 359 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  4. G. Kugerl, J. Appl. Math. Phys. 40, 816 (1989).

    Article  MathSciNet  Google Scholar 

  5. R. M. Ziff, Phys. Rev. Lett. 45, 306 (1980); Phys. Rev. A 23, 916 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  6. K. Kabin and B. D. Shizgal, “Exact evaluation of collision integrals for the nonlinear Boltzmann equation in rarefied gas dynamics,” Proceedings of the 23rd International Symposium on Rarefied Gas Dynamics, Whistler, British Columbia, 2002, Ed. by A. D. Ketsdever and E. P. Muntz (Am. Inst. Phys. New York, 2003); AIP Conf. Proc. 663, 35 (2003).

    ADS  Google Scholar 

  7. R. Sospedra-Alfonso and B. D. Shizgal, “Hot atom populations in the terrestrial atmosphere. A comparison of the nonlinear and linearized Boltzmann equations,” Proceedings of the 28th International Symposium on Rarefied Gas Dynamics, Zaragoza, Spain, 2012; AIP Conf. Proc. 1501, 91 (2012).

    ADS  Google Scholar 

  8. G. Kugerl, Philos. Trans. R. Soc. London, Ser. A 342, 413 (1993).

    Article  ADS  Google Scholar 

  9. A. Ya. Ender and I. A. Ender, Collision Integral in Boltzmann Equation and Method of Moments (St. Peterburg. Gos. Univ. St. Petersburg, 2003).

    Google Scholar 

  10. A. Ya. Ender, I. A. Ender, and A. B. Gerasimenko, The Open Plasma Phys. J. 2, 24 (2009).

    Article  ADS  Google Scholar 

  11. A. Ya. Ender and I. A. Ender, Tech. Phys. 55, 166 (2010).

    Article  Google Scholar 

  12. A. Ya. Ender, I. A. Ender, and A. B. Gerasimenko, Tech. Phys. 55, 176 (2010).

    Article  Google Scholar 

  13. S. K. Loyalka, Phys. Fluids A 1, 403 (1989).

    Article  ADS  MATH  Google Scholar 

  14. D. Hilbert, Math. Ann. 72, 562 (1912).

    Article  MATH  MathSciNet  Google Scholar 

  15. E. Hecke, Math. Z. 12, 274 (1922).

    Article  MATH  MathSciNet  Google Scholar 

  16. C. L. Pekeris, Z. Alterman, L. Finkelstein, and K. Frankoowski, Phys. Fluids 5, 1608 (1962).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. A. Ya. Ender, I. A. Ender, L. A. Bakaleinikov, and E. Yu. Flegontova, Eur. J. Mech. B/Fluids 36, 17 (2012).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. A. Ya. Ender, I. A. Ender, and L. A. Bakaleinikov, Tech. Phys. 55, 1400 (2010).

    Article  Google Scholar 

  19. A. Ya. Ender, I. A. Ender, and L. A. Bakaleinikov, Dokl. Phys. 56, 216 (2011).

    Article  ADS  Google Scholar 

  20. A. Ya. Ender, I. A. Ender, L. A. Bakaleinikov, and E. Yu. Flegontova, Tech. Phys. 57, 736 (2012).

    Article  Google Scholar 

  21. A. Ya. Ender, I. A. Ender, L. A. Bakaleinikov, and E. Yu. Flegontova, Tech. Phys. Lett. 38, 706 (2012).

    Article  ADS  Google Scholar 

  22. G. Kugerl and F. Schurrer, Phys. Lett. A 148, 158 (1990).

    Article  ADS  Google Scholar 

  23. G. Kugerl and F. Schurrer, Phys. Rev. A 39, 1429 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  24. A. Ya. Ender and I. A. Ender, Sib. Zh. Ind. Mat. 6, 156 (2003).

    MATH  MathSciNet  Google Scholar 

  25. L. Val’dman, “Transfer phenomena in moderate-pressure gases,” Gas Thermodynamics (Mashinostroenie, Moscow, 1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Bakaleinikov.

Additional information

Original Russian Text © L.A. Bakaleinikov, E.A. Tropp, E.Yu. Flegontova, A.Ya. Ender, I.A. Ender, 2015, published in Zhurnal Tekhnicheskoi Fiziki, 2015, Vol. 85, No. 1, pp. 10–14.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakaleinikov, L.A., Tropp, E.A., Flegontova, E.Y. et al. The collision integral kernels of the scalar nonlinear Boltzmann equation for pseudopower potentials. Tech. Phys. 60, 8–13 (2015). https://doi.org/10.1134/S1063784215010028

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784215010028

Keywords

Navigation