Skip to main content
Log in

The effective properties of macroscopically nonuniform ferromagnetic composites: Theory and numerical experiment

  • Solids
  • Structure
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Various theoretical models (self-consistent field, local linearization, and percolation theory methods and an analytic solution of the linear problem for an ordered medium) for calculating the magnetostatic properties of two-phase composites containing one ferromagnetic phase were considered. The concentration and field dependences of the effective magnetic permeability were found. A method for determining the coercive force and remanent magnetization as functions of the ferromagnetic phase concentration was suggested. Numerical experiments were performed for composites with a periodic distribution of circular inclusions. The results were compared with the analytically calculated effective magnetic permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. J. Fiske, H. S. Gokturk, and D. M. Kalyon, J. Mater. Sci. 32, 5551 (1997).

    Article  Google Scholar 

  2. H. Gokturk, T. Fiske, and D. M. Kalyon, J. Appl. Phys. 73, 5598 (1993).

    ADS  Google Scholar 

  3. E. Ganshina, A. Granovsky, V. Gushin, et al., Physica A (Amsterdam) 241, 45 (1997).

    ADS  Google Scholar 

  4. S. O. Gladkov, Pis’ma Zh. Tekh. Fiz. 26, 50 (2000) [Tech. Phys. Lett. 26, 115 (2000)].

    Google Scholar 

  5. V. Masheva, M. Grigorova, D. Nihtianova, et al., J. Phys. D 32, 1595 (1999).

    Article  ADS  Google Scholar 

  6. É. S. Gorkunov, V. A. Zakharov, A. I. Ul’yanov, and A. A. Chulkina, Defektoskopiya 3, 31 (2001).

    Google Scholar 

  7. Proceedings of International Conference on Electrical Transport and Optical Properties of Inhomogeneous Media, Vol. 3, Ed. by W. L. Mochan and R. G. Barrera, Physica A (Amsterdam) 207 (1994); Vol. 4, Ed. by A. M. Dykhne, A. N. Lagarkov, and A. K. Sarychev, Physica A (Amsterdam) 241 (1997); Vol. 5, Ed. by P. M. Hui, P. Sheng, and L.-H. Tang, Physica B (Amsterdam) 279 (2000).

  8. K. J. Binns, P. J. Lawrenson, and C. W. Trowbridge, The Analytical and Numerical Solution of Electric and Magnetic Fields (Wiley, Chichester, England, 1992).

    Google Scholar 

  9. N. Ida, Numerical Modeling for Electromagnetic Nondestructive Evaluation (Chapman and Hall, London, 1995).

    Google Scholar 

  10. D. A. Bruggeman, Ann. Phys. (Leipzig) 24, 636 (1935).

    Google Scholar 

  11. R. Landauer, J. Appl. Phys. 23, 779 (1952).

    Article  Google Scholar 

  12. M. I. Shvidler, Statistical Hydrodynamics of Porous Media (Nedra, Moscow, 1985).

    Google Scholar 

  13. P. M. Hui, Y. F. Woo, and W. M. V. Wan, J. Phys. C 7, L593 (1995).

    Google Scholar 

  14. P. M. Hui, P. Cheung, and Y. R. Kwong, Physica A (Amsterdam) 241, 301 (1997).

    ADS  Google Scholar 

  15. S. W. Kenkel and J. P. Straley, Phys. Rev. Lett. 49, 767 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  16. J. P. Straley and S. W. Kenkel, Phys. Rev. B 29, 6299 (1984).

    Article  ADS  Google Scholar 

  17. A. M. Dykhne, Zh. Éksp. Teor. Fiz. 59, 110 (1970) [Sov. Phys. JETP 32, 63 (1971)].

    Google Scholar 

  18. V. V. Bakaev, A. A. Snarskii, and M. V. Shamonin, Zh. Tekh. Fiz. 71(12), 84 (2001) [Tech. Phys. 46, 1571 (2001)].

    Google Scholar 

  19. V. V. Bakaev, A. A. Snarskii, and M. V. Shamonin, Zh. Tekh. Fiz. 72, 129 (2002) [Tech. Phys. 47, 125 (2002)].

    Google Scholar 

  20. A. A. Snarskii and M. I. Zhenirovsky, J. Phys. B 322, 84 (2002).

    Google Scholar 

  21. I. Webman, J. Jortner, and M. H. Cohen, Phys. Rev. B 16, 2959 (1977).

    ADS  Google Scholar 

  22. B. Ya. Balagurov, Fiz. Tekh. Poluprovodn. (Leningrad) 16, 259 (1982) [Sov. Phys. Semicond. 16, 1204 (1982)].

    Google Scholar 

  23. A. A. Snarskii, Zh. Éksp. Teor. Fiz. 91, 1405 (1986) [Sov. Phys. JETP 64, 828 (1986)].

    Google Scholar 

  24. A. E. Morozovskii and A. A. Snarskii, Zh. Éksp. Teor. Fiz. 95, 1844 (1989) [Sov. Phys. JETP 68, 1066 (1989)].

    Google Scholar 

  25. A. E. Morozovskii and A. A. Snarskii, Pis’ma Zh. Éksp. Teor. Fiz. 52, 871 (1990) [JETP Lett. 52, 224 (1990)].

    Google Scholar 

  26. A. E. Morozovskii and A. A. Snarskii, Zh. Éksp. Teor. Fiz. 102, 683 (1992) [Sov. Phys. JETP 75, 366 (1992)].

    Google Scholar 

  27. A. E. Morozovsky and A. A. Snarskii, Int. J. Electron. 78, 135 (1995).

    Google Scholar 

  28. A. A. Snarskii, A. E. Morozovsky, A. Kolek, and A. Kusy, Phys. Rev. E 53, 5596 (1996).

    Article  ADS  Google Scholar 

  29. B. Ya. Balagurov and V. A. Kashin, Zh. Éksp. Teor. Fiz. 117, 978 (2000) [JETP 90, 850 (2000)].

    Google Scholar 

  30. D. J. Bergman, Physica A (Amsterdam) 270, 8 (1999).

    Google Scholar 

  31. N. S. Bakhvalov and G. P. Panasenko, Averaging of Processes in Periodic Media (Nauka, Moscow, 1984).

    Google Scholar 

  32. Yu. P. Emets, Electrical Properties of Composites with Regular Structure (Naukova Dumka, Kiev, 1986).

    Google Scholar 

  33. B. Ya. Balagurov and V. A. Kashin, Zh. Tekh. Fiz. 71, 106 (2001) [Tech. Phys. 46, 101 (2001)].

    Google Scholar 

  34. B. Ya. Balagurov, Zh. Éksp. Teor. Fiz. 120, 668 (2001) [JETP 93, 586 (2001)].

    Google Scholar 

  35. J. F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices, 2nd ed. (Clarendon Press, Oxford, 1964; Mir, Moscow, 1967).

    Google Scholar 

  36. A. M. Satanin, A. A. Snarskii, K. V. Slipchenko, and I. V. Bessudnov, Zh. Tekh. Fiz. 68(5), 132 (1998) [Tech. Phys. 43, 602 (1998)].

    Google Scholar 

  37. D. C. Carpenter, Mater. Eval. 877 (2000).

  38. M. Shamonin, M. Klank, O. Hagedorn, and H. Dötsch, Appl. Opt. 40, 3182 (2001).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 123, No. 1, 2003, pp. 79–91.

Original Russian Text Copyright © 2003 by Snarskii, Shamonin, Zhenirovsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snarskii, A.A., Shamonin, M.V. & Zhenirovsky, M.I. The effective properties of macroscopically nonuniform ferromagnetic composites: Theory and numerical experiment. J. Exp. Theor. Phys. 96, 66–77 (2003). https://doi.org/10.1134/1.1545385

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1545385

Keywords

Navigation