Skip to main content
Log in

Memory element based on Si/CaF2 periodic nanostructures

  • Solid-State Electronics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A memory element based on a Si/CaF2 periodic nanostructure is proposed. In this element, information is recorded through charge capture by trap states in a CaF2 dielectric. The high and low signal levels correspond to the current in the maximum and minimum of the negative differential resistance region, which forms as a result of the resonant tunnel distribution of charge carriers over trap levels in the dielectric. The speed of such logical elements depends on the rate of activation carrier trapping and the rate of tunnel carrier transfer from one state to another. It is shown that both Si/CaF2-based logical elements and memory elements proposed operate at temperatures from 77 to 300 K, have a switching time of 10−12–10−10 s, and are compatible with silicon IC technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Esaki, Phys. Rev. 109, 63 (1958).

    Article  Google Scholar 

  2. R. Tsu and L. Esaki, Appl. Phys. Lett. 22, 562 (1973).

    Article  Google Scholar 

  3. C. G. Smith, Rep. Prog. Phys. 59, 235 (1994).

    ADS  Google Scholar 

  4. V. Ioannou-Sougleridis, A. G. Nassiopoulou, F. Arnaud d’Avitaya, et al., European Projects: Silicon Modules for Integrated Light Engineering (Marseille, 2000).

  5. V. Ioannou-Sougleridis, T. Ouisse, A. G. Nassiopoulou, et al., J. Appl. Phys. 89, 610 (2001).

    Article  ADS  Google Scholar 

  6. Yu. A. Berashevich, A. L. Danilyuk, A. N. Kholod, and V. E. Borisenko, Fiz. Tekh. Poluprovodn. (St. Petersburg) 35, 110 (2001) [Semiconductors 35, 112 (2001)].

    Google Scholar 

  7. Yu. A. Berashevich, A. L. Danilyuk, A. N. Kholod, and V. E. Borisenko, Fiz. Tekh. Poluprovodn. (St. Petersburg) 36, 91 (2002) [Semiconductors 36, 85 (2002)].

    Google Scholar 

  8. Yu. A. Berashevich, A. L. Danilyuk, and V. E. Borisenko, Fiz. Tekh. Poluprovodn. (St. Petersburg) 36, 718 (2002) [Semiconductors 36, 679 (2002)].

    Google Scholar 

  9. D. J. Paul, P. See, I. V. Zozoulenko, et al., Appl. Phys. Lett. 77, 1653 (2000).

    Article  ADS  Google Scholar 

  10. M. Watanabe, T. Funayama, T. Teraji, and N. Salamaki, Jpn. J. Appl. Phys., Part 2 39, L716 (2000).

    Google Scholar 

  11. M. Watanabe, Yu. Aoki, W. Saito, and M. Tsuganazawa, Jpn. J. Appl. Phys., Part 2 38, L116 (1999).

    Google Scholar 

  12. K. J. Chen, T. Waho, K. Maezawa, and M. Yamamoto, IEEE Electron Device Lett. 17, 309 (1996).

    Google Scholar 

  13. V. Ya. Kirpichenko, Zh. Éksp. Teor. Fiz. 116, 1048 (1999) [JETP 89, 559 (1999)].

    Google Scholar 

  14. M. T. Cuberes, A. Bauer, H. J. Wen, et al., J. Vac. Sci. Technol. B 12, 2646 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Tekhnichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 73, No. 1, 2003, pp. 67–72.

Original Russian Text Copyright © 2003 by Berashevich, Korolev, Danilyuk, Borisenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berashevich, Y.A., Korolev, A.V., Danilyuk, A.L. et al. Memory element based on Si/CaF2 periodic nanostructures. Tech. Phys. 48, 63–67 (2003). https://doi.org/10.1134/1.1538729

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1538729

Keywords

Navigation