Skip to main content
Log in

Self-diffraction of light waves by a nonlocal photorefractive grating in a crystal with the \(\bar 43m\) symmetry

  • Atoms, Spectra, Radiation
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A frequency-degenerate steady-state two-wave interaction on a dynamic transmitting phase grating formed in a cubic crystal of the \(\bar 43m\) symmetry group with a nonlocal photorefractive response is considered in the paraxial approximation. The conservation laws for the nonlinear system of equations of coupled waves, derived for an arbitrary orientation of interaction relative to the crystallographic axes and the polarization of incident light waves, indicate that the contribution to energy exchange between the interacting waves may come from fluxes in different directions. The possibility of nonunidirectional energy pumping from one wave to the other upon a change in their polarization state due to the interaction is demonstrated. For the transverse configuration of the interaction and linear polarization of incident waves, explicit analytic expressions for the scalar amplitudes of the orthogonal components of the light field are derived in the linear approximation in the coefficient of modulation of the interference pattern of light. The possibility of rotation of the polarization planes of light waves without a change in their intensity is demonstrated. For three particular configurations, the dependence of the efficiency of interaction of linearly polarized waves on the reduced length, orientation of the polarization vectors of the incident light waves, and the ratio of their intensities are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. L. Vinetskii, N. V. Kukhtarev, S. G. Odulov, et al., Usp. Fiz. Nauk 129, 113 (1979) [Sov. Phys. Usp. 22, 742 (1979)].

    Google Scholar 

  2. B. Ya. Zel’dovich, N. F. Pilipetskii, and V. V. Shkunov, Wave Front Reversal (Nauka, Moscow, 1985).

    Google Scholar 

  3. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984; Nauka, Moscow, 1989).

    Google Scholar 

  4. S. G. Odulov, M. S. Soskin, and A. I. Khizhnyak, Dynamic Lattice Lasers (Nauka, Moscow, 1990).

    Google Scholar 

  5. N. Kukhtarev, V. Markov, and S. Odulov, Opt. Commun. 23, 338 (1977).

    Article  ADS  Google Scholar 

  6. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, et al., Ferroelectrics 22, 949 (1979); 22, 961 (1979).

    Google Scholar 

  7. S. I. Stepanov and G. S. Trofimov, Zh. Tekh. Fiz. 55, 559 (1985) [Sov. Phys. Tech. Phys. 30, 331 (1985)].

    Google Scholar 

  8. P. Tayebati and D. Mahgerefteh, J. Opt. Soc. Am. B 8, 1053 (1991).

    ADS  Google Scholar 

  9. M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optics (Nauka, St. Petersburg, 1992).

    Google Scholar 

  10. B. I. Sturman and V. M. Fridkin, Photovoltaic Effect in Media without Center of Symmetry and Related Phenomena (Nauka, Moscow, 1992).

    Google Scholar 

  11. B. I. Sturman, Zh. Tekh. Fiz. 48, 1010 (1978) [Sov. Phys. Tech. Phys. 23, 589 (1978)].

    Google Scholar 

  12. M. P. Petrov, S. V. Miridonov, S. I. Stepanov, et al., Opt. Commun. 31, 301 (1979).

    Article  ADS  Google Scholar 

  13. N. V. Kukhtarev, B. D. Pavlik, V. V. Sorokin, et al., Kvantovaya Élektron. (Moscow) 13, 326 (1986).

    Google Scholar 

  14. N. V. Kukhtarev, M. S. Brodin, and V. I. Volkov, Fiz. Tverd. Tela (Leningrad) 30, 2757 (1988) [Sov. Phys. Solid State 30, 1588 (1988)].

    Google Scholar 

  15. G. Pauliat, C. Besson, and G. Roosen, IEEE J. Quantum Electron. 23, 1736 (1989).

    Google Scholar 

  16. C. Stace, A. K. Powell, K. Walsh, et al., Opt. Commun. 70, 509 (1989).

    Article  ADS  Google Scholar 

  17. G. A. Brost, J. Opt. Soc. Am. B 9, 1454 (1992).

    ADS  Google Scholar 

  18. H. C. Pedersen and P. M. Johansen, J. Opt. Soc. Am. B 12, 592 (1995).

    ADS  Google Scholar 

  19. H. Tuovinen, A. A. Kamshilin, and T. Jaaskelainen, J. Opt. Soc. Am. B 14, 3383 (1997).

    ADS  Google Scholar 

  20. B. I. Sturman, E. V. Podivilov, K. H. Ringhofer, et al., Phys. Rev. E 60, 3332 (1999).

    Article  ADS  Google Scholar 

  21. R. V. Litvinov and S. M. Shandarov, Opt. Spektrosk. 83, 334 (1997) [Opt. Spectrosc. 83, 313 (1997)].

    Google Scholar 

  22. Yi Hu, K. H. Ringhofer, and B. I. Sturman, J. Appl. Phys. 68, 931 (1999).

    Google Scholar 

  23. V. Yu. Krasnoperov, R. V. Litvinov, and S. M. Shandarov, Fiz. Tverd. Tela (St. Petersburg) 41, 632 (1999) [Phys. Solid State 41, 568 (1999)].

    Google Scholar 

  24. R. V. Litvinov, S. M. Shandarov, and S. G. Chistyakov, Fiz. Tverd. Tela (St. Petersburg) 42, 1397 (2000) [Phys. Solid State 42, 1435 (2000)].

    Google Scholar 

  25. R. V. Litvinov and S. M. Shandarov, Kvantovaya Élektron. (Moscow) 31, 973 (2001).

    Google Scholar 

  26. A. G. Mart’yanov, S. M. Shandarov, and R. V. Litvinov, Fiz. Tverd. Tela (St. Petersburg) 44, 1006 (2002) [Phys. Solid State 44, 1050 (2002)].

    Google Scholar 

  27. R. V. Litvinov, Kvantovaya Élektron. (Moscow) 32, 535 (2002).

    Article  Google Scholar 

  28. A. A. Chaban, Zh. Éksp. Teor. Fiz. 57, 1387 (1969) [Sov. Phys. JETP 30, 751 (1969)].

    Google Scholar 

  29. S. I. Stepanov and M. P. Petrov, Opt. Commum. 53, 292 (1985).

    ADS  Google Scholar 

  30. Ph. Refregier, L. Solymar, H. Rajbenbach, et al., J. Appl. Phys. 58, 45 (1985).

    Article  ADS  Google Scholar 

  31. K. Blotekjaer, J. Appl. Phys. 48, 2495 (1977).

    Article  ADS  Google Scholar 

  32. M. G. Moharam, T. K. Gaylord, R. Magnusson, et al., J. Appl. Phys. 50, 5642 (1979).

    Article  ADS  Google Scholar 

  33. R. Saxena and T. Y. Chang, J. Opt. Soc. Am. B 9, 1467 (1992).

    ADS  Google Scholar 

  34. A. V. Dugin, B. Ya. Zel’dovich, P. N. Il’inykh, et al., Kvantovaya Élektron. (Moscow) 19, 1129 (1992).

    Google Scholar 

  35. S. M. Shandarov, N. I. Nazhestkina, O. V. Kobozev, et al., J. Appl. Phys. 68, 1007 (1999).

    Google Scholar 

  36. G. V. Calvo, B. Sturman, F. Agulló-Lopez, et al., Phys. Rev. Lett. 84, 3839 (2000).

    Article  ADS  Google Scholar 

  37. O. V. Kobozev, A. E. Mandel’, S. M. Shandarov, et al., Kvantovaya Élektron. (Moscow) 30, 514 (2000).

    Article  Google Scholar 

  38. S. M. Shandarov, V. Yu. Krasnoperov, V. A. Kartashov, et al., Neorg. Mater. 37, 728 (2001).

    Google Scholar 

  39. R. V. Litvinov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 10, 20 (2001).

  40. A. P. Kartashov and B. L. Rozhdestvenskii, Ordinary Differential Equations and Foundations of Calculus of Variations (Nauka, Moscow, 1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 122, No. 5, 2002, pp. 950–964.

Original Russian Text Copyright © 2002 by Litvinov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Litvinov, R.V. Self-diffraction of light waves by a nonlocal photorefractive grating in a crystal with the \(\bar 43m\) symmetry. J. Exp. Theor. Phys. 95, 820–832 (2002). https://doi.org/10.1134/1.1528673

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1528673

Keywords

Navigation