Skip to main content
Log in

Infrared absorption in dense sodium vapor

  • Plasma, Gases
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The absorption spectra of a dense resonance medium were experimentally studied for the example of thermally heated dense sodium vapor. Several mechanisms that might cause substantial absorption and enhanced intensity of emission in the IR spectral region, λ τ; 0.9 μm, were considered. For the first time, a detailed study of the structure of the absorption spectra of sodium vapor in the specified wavelength range was performed to determine the influence of the kind and pressure of the buffer gas. It was found that buffer gas characteristics had a substantial effect on the absorption coefficient of vapor. The presence of the molecular component (dimers and trimers) in sodium vapor could not explain the experimental dependences of absorption in the infrared region. Possible influence of microparticles formed in condensation of convective sodium vapor flows in heated cells on the optical properties of vapor was considered. Microparticles could contribute to the observed absorption, but were incapable of explaining the substantial intensity of vapor radiation reported earlier. Possible many-particle effects on the absorption in the far spectral line wing were discussed. For the first time, the method of molecular dynamics was used to show for the example of the distribution function of ionic microfields in a dense plasma that such effects were in principle capable of substantially raising the profile of the line and increasing absorption in the region of large detunings from the resonance compared with the simple quasi-static model in the nearest-neighbor approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. K. Zemtsov and A. N. Starostin, Zh. Éksp. Teor. Fiz. 103, 345 (1993) [JETP 76, 186 (1993)].

    Google Scholar 

  2. Yu. K. Zemtsov, A. Yu. Sechin, and A. N. Starostin, Zh. Éksp. Teor. Fiz. 110, 1654 (1996) [JETP 83, 909 (1996)].

    Google Scholar 

  3. Yu. K. Zemtsov, A. Yu. Sechin, A. N. Starostin, et al., Pis’ma Zh. Éksp. Teor. Fiz. 65, 807 (1997) [JETP Lett. 65, 839 (1997)].

    Google Scholar 

  4. Yu. K. Zemtsov, A. Yu. Sechin, A. N. Starostin, et al., Zh. Éksp. Teor. Fiz. 114, 135 (1998) [JETP 87, 76 (1998)].

    Google Scholar 

  5. A. G. Leonov, A. A. Rudenko, A. N. Starostin, et al., Pis’ma Zh. Tekh. Fiz. 26(9), 52 (2000) [Tech. Phys. Lett. 26, 382 (2000)].

    Google Scholar 

  6. D. O. Wharmby, IEE Proc., Part A: Phys. Sci., Meas. Instrum., Manage. Educ. 127, 165 (1980).

    Google Scholar 

  7. N. D. Bhaskar, E. Zouboulis, T. McClelland, and W. Happer, Phys. Rev. Lett. 42, 640 (1979).

    Article  ADS  Google Scholar 

  8. A. Vasilakis, N. D. Bhaskar, and W. Happer, J. Chem. Phys. 73, 1490 (1980).

    Article  ADS  Google Scholar 

  9. E. Zouboulis, N. D. Bhaskar, A. Vasilakis, and W. Happer, J. Chem. Phys. 72, 2356 (1980).

    Article  ADS  Google Scholar 

  10. J. Huennekens, S. Schaefer, M. Ligare, and W. Happer, J. Chem. Phys. 80, 4794 (1984).

    Article  ADS  Google Scholar 

  11. M. Palle, S. Milosevic, D. Veza, and G. Pichler, Opt. Commun. 57, 394 (1986).

    Article  ADS  Google Scholar 

  12. M. Ligare and J. B. Edmonds, J. Chem. Phys. 95, 3857 (1991).

    Article  ADS  Google Scholar 

  13. L. M. Biberman, V. S. Vorob’ev, and I. T. Yakubov, Kinetics of Nonequilibrium Low-Temperature Plasmas (Nauka, Moscow, 1982; Consultants Bureau, New York, 1987).

    Google Scholar 

  14. L. A. Apresyan and Yu. A. Kravtsov, Theory of Radiative Transport (Nauka, Moscow, 1983).

    Google Scholar 

  15. A. Phelps, Tunable Gas Laser Utilizing Ground State Dissociation, JILA Report 110 (Univ. of Colorado, Boulder, Colorado, 1972).

    Google Scholar 

  16. G. York and A. Gallagher, Power Gas Laser on Alkali Dimers A-X Band Radiation, JILA Report 114 (Univ. of Colorado, Boulder, Colorado, 1974).

    Google Scholar 

  17. G. York, R. Scheps, and A. Gallagher, J. Chem. Phys. 63, 1052 (1975).

    Article  ADS  Google Scholar 

  18. W. P. West and A. Gallagher, Phys. Rev. A 17, 1431 (1978).

    Article  ADS  Google Scholar 

  19. M. J. Jongerius, J. Phys. B 20, 3345 (1987).

    Article  ADS  Google Scholar 

  20. K. J. Nieuwesteeg, T. Hollander, and C. Th. J. Alkemade, J. Phys. B 20, 515 (1987).

    ADS  Google Scholar 

  21. J. Schlejen, C. J. Jalink, J. Korving, et al., J. Phys. B 20, 2691 (1987).

    Article  ADS  Google Scholar 

  22. M. Shurgalin, W. H. Parkinson, K. Yoshino, et al., Meas. Sci. Technol. 11, 730 (2000).

    Article  ADS  Google Scholar 

  23. C. R. Vidal and J. Cooper, J. Appl. Phys. 40, 3370 (1969).

    Article  Google Scholar 

  24. W. Demtroder, Laser Spectroscopy: Basic Concepts and Instrumentation (Springer-Verlag, New York, 1981; Nauka, Moscow, 1985).

    Google Scholar 

  25. D. A. Evensky and K. M. Sando, Phys. Rev. A 31, 772 (1985).

    Article  ADS  Google Scholar 

  26. A. N. Starostin, I. I. Yakunin, A. G. Leonov, et al., in Proceedings of the 15th International Conference on Spectral Line Shapes (ICSLS), 2001, Ed. by J. Seidel (American Inst. of Physics, Melville, 2001), Vol. 11, p. 16.

    Google Scholar 

  27. Handbook of Physical Quantities (Énergoatomizdat, Moscow, 1986).

  28. A. N. Zaidel’, G. V. Ostrovskaya, and Yu. I. Ostrovskii, Technology and Practice of Spectroscopy (Nauka, Moscow, 1976).

    Google Scholar 

  29. Tables of Spectral Lines (Nauka, Moscow, 1977).

  30. A. N. Klyucharev and M. L. Yanson, Elementary Processes in Plasma of Alkali Metals (Énergoatomizdat, Moscow, 1988).

    Google Scholar 

  31. J. Schlejen, J. Mooibroek, J. Korving, et al., Chem. Phys. Lett. 128, 489 (1986).

    Article  ADS  Google Scholar 

  32. J. P. Woerdman and J. J. De Groot, Chem. Phys. Lett. 80, 220 (1981).

    Article  ADS  Google Scholar 

  33. H.-K. Chung, K. Kirby, and J. F. Babb, Phys. Rev. A 63, 032516 (2001).

    Google Scholar 

  34. J. J. de Groot and J. A. J. M. van Vliet, The High-Pressure Sodium Lamp (Macmillan, Basingstoke, 1986), Series: Philips Technical Library.

    Google Scholar 

  35. B. Kendric, Phys. Rev. Lett. 79, 2431 (1997).

    ADS  Google Scholar 

  36. R. L. Martin and E. R. Davidson, Mol. Phys. 35, 1713 (1978).

    Google Scholar 

  37. J. L. Martins, R. Car, and J. Buttet, J. Chem. Phys. 78, 5646 (1983).

    Article  ADS  Google Scholar 

  38. T. C. Thompson, G. Izmiran, S. J. Lemon, et al., J. Chem. Phys. 82, 5597 (1985).

    ADS  Google Scholar 

  39. V. Bonavic-Koutecky, P. Fantucci, and J. Koutecky, Chem. Rev. 91, 1035 (1991).

    Google Scholar 

  40. W. A. de Heer, Rev. Mod. Phys. 65, 611 (1993).

    ADS  Google Scholar 

  41. B. M. Smirnov, Usp. Fiz. Nauk 167, 1169 (1997) [Phys. Usp. 40, 1117 (1997)].

    Google Scholar 

  42. Yu. I. Petrov, Physics of Small Particles (Nauka, Moscow, 1982).

    Google Scholar 

  43. B. M. Smirnov, Usp. Fiz. Nauk 170, 495 (2000).

    Google Scholar 

  44. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, Berlin, 1995).

    Google Scholar 

  45. J. M. Pacheco and W.-D. Schone, Phys. Rev. Lett. 79, 4986 (1997).

    ADS  Google Scholar 

  46. T. Inagaki, L. C. Emerson, E. T. Arakawa, and M. W. Williams, Phys. Rev. B 13, 2305 (1976).

    ADS  Google Scholar 

  47. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1969; Nauka, Moscow, 1970).

    Google Scholar 

  48. J. Frenkel, Kinetic Theory of Liquids (Akad. Nauk SSSR, Moscow, 1946; Clarendon, Oxford, 1946).

    Google Scholar 

  49. Ya. B. Zel’dovich, Zh. Éksp. Teor. Fiz. 12, 525 (1942).

    Google Scholar 

  50. M. N. Ivanovskii, V. P. Sorokin, and V. I. Subbotin, Evaporation and Condensation of Metals (Atomizdat, Moscow, 1976).

    Google Scholar 

  51. V. N. Piskunov, Theoretical Kinetic Models of Aerosol Formation (VNIIÉF, Sarov, 2000).

    Google Scholar 

  52. M. V. Brykin and K. G. Garnisov, Teplofiz. Vys. Temp. 32, 267 (1994).

    Google Scholar 

  53. J. Lothe and G. M. Pound, J. Chem. Phys. 36, 2080 (1962).

    Article  Google Scholar 

  54. V. G. Shchukin and V. V. Marusin, Zh. Fiz. Khim. 55, 1105 (1981).

    Google Scholar 

  55. V. G. Gorbunov, U. G. Pirumov, and Yu. A. Ryzhov, Non-equilibrium Condensation in High-Speed Gas Flow (Mashinostroenie, Moscow, 1984).

    Google Scholar 

  56. D. I. Zhukhovitskii, Teplofiz. Vys. Temp. 32, 261 (1994).

    Google Scholar 

  57. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1988; Pergamon, New York, 1987).

    Google Scholar 

  58. I. M. Lifshits, S. A. Gredeskul, and L. A. Pastur, Introduction to the Theory of Disordered Systems (Nauka, Moscow, 1982; Wiley, New York, 1988).

    Google Scholar 

  59. H. R. Griem, Spectral Line Broadening by Plasmas (Academic, New York, 1974; Mir, Moscow, 1978).

    Google Scholar 

  60. C. F. Hooper, Jr., Phys. Rev. 149, 77 (1966).

    Article  ADS  Google Scholar 

  61. E. Kh. Akhmedov, A. L. Godunov, Yu. K. Makhrov, et al., Zh. Éksp. Teor. Fiz. 89, 470 (1985) [Sov. Phys. JETP 62, 266 (1985)].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 122, No. 2, 2002, pp. 282–297.

Original Russian Text Copyright © 2002 by Leonov, Rudenko, Starostin, Taran, Chekhov, Yakunin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leonov, A.G., Rudenko, A.A., Starostin, A.N. et al. Infrared absorption in dense sodium vapor. J. Exp. Theor. Phys. 95, 242–254 (2002). https://doi.org/10.1134/1.1506431

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1506431

Keywords

Navigation