Skip to main content
Log in

Bose condensation of interwell excitons in double quantum wells

  • Condensed Matter
  • Published:
Journal of Experimental and Theoretical Physics Letters Aims and scope Submit manuscript

Abstract

The luminescence of interwell excitons in double quantum wells GaAs/AlGaAs (n-i-n heterostructures) with large-scale fluctuations of random potential in the heteroboundary planes was studied. The properties of excitons whose photoexcited electron and hole are spatially separated in the neighboring quantum wells were studied as functions of density and temperature within the domains on the scale less than one micron. For this purpose, the surfaces of the samples were coated with a metallic mask containing specially prepared holes (windows) of a micron size an less for the photoexcitation and observation of luminescence. For weak pumping (less than 50 μW), the interwell excitons are strongly localized because of small-scale fluctuations of a random potential, and the corresponding photoluminescence line is inhomogeneously broadened (up to 2.5 meV). As the resonant excitation power increases, the line due to the delocalized excitons arises in a thresholdlike manner, after which its intensity linearly increases with increasing pump power, narrows (the smallest width is 350 μeV), and undergoes a shift (of about 0.5 μeV) to lower energies, in accordance with the filling of the lowest state in the domain. With a rise in temperature, this line disappears from the spectrum (T c ≤ 3.4 K). The observed phenomenon is attributed to Bose-Einstein condensation in a quasi-two-dimensional system of interwell excitons. In the temperature range studied (1.5–3.4 K), the critical exciton density and temperature increase almost linearly with temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Moskalenko, Fiz. Tverd. Tela (Leningrad) 4, 276 (1962) [Sov. Phys. Solid State 4, 199 (1962)]; I. M. Blatt, K. W. Boer, and W. Brandt, Phys. Rev. 126, 1691 (1962); R. S. Casella, J. Appl. Phys. 34, 1703 (1963).

    Google Scholar 

  2. Yu. E. Lozovik and V. I. Yudson, Pis’ma Zh. Éksp. Teor. Fiz. 22, 556 (1975) [JETP Lett. 22, 274 (1975)].

    Google Scholar 

  3. T. Fukuzawa, E. E. Mendez, and J. M. Hong, Phys. Rev. Lett. 64, 3066 (1990).

    Article  ADS  Google Scholar 

  4. J. E. Golub, K. Kash, J. P. Harbison, and L. T. Flores, Phys. Rev. B 41, 8564 (1990).

    Article  ADS  Google Scholar 

  5. L. V. Butov, A. Zrenner, G. A. Abstreiter, et al., Phys. Rev. Lett. 73, 304 (1994); L. V. Butov, in Proceedings of the 23rd International Conference on Physics of Semiconductors, Berlin, 1996.

    Article  ADS  Google Scholar 

  6. V. B. Timofeev, A. V. Larionov, A. S. Ioselevich, et al., Pis’ma Zh. Éksp. Teor. Fiz. 67, 580 (1998) [JETP Lett. 67, 613 (1998)].

    Google Scholar 

  7. V. V. Krivolapchuk, E. S. Moskalenko, A. L. Zhmodikov, et al., Solid State Commun. 111, 49 (1999).

    Article  Google Scholar 

  8. L. V. Butov, A. Imamoglu, A. V. Mintsev, et al., Phys. Rev. B 59, 1625 (1999).

    Article  ADS  Google Scholar 

  9. A. V. Larionov, V. B. Timofeev, J. M. Hvam, and K. Soerensen, Zh. Éksp. Teor. Fiz. 117, 1255 (2000) [JETP 90, 1093 (2000)].

    Google Scholar 

  10. L. V. Butov, A. V. Mintsev, Yu. E. Lozovik, et al., Phys. Rev. B 62, 1548 (2000).

    Article  ADS  Google Scholar 

  11. A. V. Larionov, V. B. Timofeev, J. M. Hvam, and K. Soerensen, Pis’ma Zh. Éksp. Teor. Fiz. 75, 233 (2002) [JETP Lett. 75, 200 (2002)].

    Google Scholar 

  12. D. Yoshioka and A. H. MacDonald, J. Phys. Soc. Jpn. 59, 4211 (1990).

    Google Scholar 

  13. X. M. Chen and J. J. Quinn, Phys. Rev. Lett. 67, 895 (1991).

    ADS  Google Scholar 

  14. Xuejun Zhu, P. L. Littlewood, M. S. Hybersten, and T. Rice, Phys. Rev. Lett. 74, 1633 (1995).

    Article  ADS  Google Scholar 

  15. J. Fernández-Rossier and C. Tejedor, Phys. Rev. Lett. 78, 4809 (1997).

    Article  ADS  Google Scholar 

  16. Yu. E. Lozovik and O. L. Berman, Zh. Éksp. Teor. Fiz. 111, 1879 (1997) [JETP 84, 1027 (1997)].

    Google Scholar 

  17. Yu. E. Lozovik and I. V. Ovchinnikov, Pis’ma Zh. Éksp. Teor. Fiz. 74, 318 (2001) [JETP Lett. 74, 288 (2001)].

    Google Scholar 

  18. V. B. Timofeev, A. V. Larionov, M. Grassi Alessi, et al., Phys. Rev. B 60, 8897 (1999).

    Article  ADS  Google Scholar 

  19. P. C. Hoenberg, Phys. Rev. 158, 383 (1967).

    ADS  Google Scholar 

  20. S. W. Brown, T. A. Kennedy, D. Gammon, et al., Phys. Rev. B 54, R17339 (1996).

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Pis’ma v Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 75, No. 11, 2002, pp. 689–694.

Original Russian Text Copyright © 2002 by Larionov, Timofeev, Ni, Dubonos, Hvam, Soerensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larionov, A.V., Timofeev, V.B., Ni, P.A. et al. Bose condensation of interwell excitons in double quantum wells. Jetp Lett. 75, 570–574 (2002). https://doi.org/10.1134/1.1500724

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1500724

PACS numbers

Navigation