Skip to main content
Log in

Anomalous acoustoelectric effect and the transport properties of thin La0.67Ca0.33Mno3 films

  • Solids
  • Electronic Properties
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A complex of studies of the physical properties of thin lanthanum manganite La0.67Ca0.33MnO3 films were performed for a monolithic layered structure consisting of a LiNbO3 substrate and a La0.67Ca0.33MnO3 thin epitaxial film. For the first time, not only ordinary acoustoelectric (AE) current of charge carriers dragged by a surface acoustic wave, but also longitudinal anomalous AE current, which flowed in a distinguished direction independent of the direction of the surface acoustic wave propagation, was observed. The anomalous AE effect predominated close to the metal-insulator transition, whereas the odd AE effect predominated at high and low temperatures. The sign of the ordinary odd AE effect corresponded to hole conduction of the film. A theoretical analysis showed that the anomalous AE effect is due to a strong film conduction modulation caused by deformation created by the surface acoustic wave. The theoretical results were in close agreement with experiment. The temperature dependences of resistivity ρ(both in the absence of a magnetic field and in fields of up to 3 T), high-frequency magnetic susceptibility, and thermoelectric power were studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Zener, Phys. Rev. 82, 403 (1951).

    Article  ADS  Google Scholar 

  2. A. J. Millis, P. B. Littlewood, and B. I. Shraiman, Phys. Rev. Lett. 74, 5144 (1995).

    Article  ADS  Google Scholar 

  3. J. M. D. Coey, M. Viret, and S. von Molnär, Adv. Phys. 48, 167 (1999).

    Article  ADS  Google Scholar 

  4. L. P. Gor’kov, Usp. Fiz. Nauk 168, 665 (1998) [Phys. Usp. 41, 589 (1998)].

    Google Scholar 

  5. É. L. Nagaev, Usp. Fiz. Nauk 166, 833 (1996) [Phys. Usp. 39, 781 (1996)].

    Google Scholar 

  6. D. L. Khomski and G. A. Sawatzky, Solid State Commun. 102, 87 (1997).

    Google Scholar 

  7. Y. S. Wang, A. K. Heilman, B. Lorentz, et al., Phys. Rev. B 60, R14998 (1999); J. J. Neumeier, M. F. Hundlley, Y. D. Thompson, and R. H. Heffer, Phys. Rev. B 52, R7006 (1995).

  8. Guo-meng Zhao, V. Smolyaninova, W. Prelleir, and H. Keller, Phys. Rev. Lett. 84, 6086 (2000).

    ADS  Google Scholar 

  9. M. F. Hundley and J. J. Neumeier, Phys. Rev. B 55, 11511 (1997).

    Google Scholar 

  10. T. T. M. Palstra, A. P. Ramizer, S.-W. Cheong, and B. R. Zegarski, Phys. Rev. B 56, 5104 (1997).

    Article  ADS  Google Scholar 

  11. G. Jakob, F. Martin, W. Westerburg, and H. Adrian, Phys. Rev. B 57, 10252 (1998); S. H. Chun, M. B. Salamon, Y. Lyanda-Geller, et al., Phys. Rev. Lett. 84, 757 (2000).

  12. Li Wang, J. Yin, S. Huang, et al., Phys. Rev. B 60, R6976 (1999).

    ADS  Google Scholar 

  13. A. I. Morozov, Pis’ma Zh. Éksp. Teor. Fiz. 2, 362 (1965) [JETP Lett. 2, 228 (1965)].

    Google Scholar 

  14. O. Entin-Wohlman, Y. Levinson, and Yu. M. Galperin, Phys. Rev. B 62, 7283 (2000).

    Article  ADS  Google Scholar 

  15. V. L. Gurevich and A. L. Éfros, Zh. Éksp. Teor. Fiz. 44, 2131 (1963) [Sov. Phys. JETP 17, 1432 (1963)]; V. L. Gurevich, Fiz. Tekh. Poluprovodn. (Leningrad) 2, 1557 (1968) [Sov. Phys. Semicond. 2, 1299 (1969)].

    Google Scholar 

  16. Y. Ilisavskii, A. Goltsev, K. Dyakonov, et al., Phys. Rev. Lett. 87, 146602 (2001).

    Google Scholar 

  17. D. Emin and T. Holstein, Ann. Phys. 53, 439 (1969).

    Google Scholar 

  18. G. Jakob, W. Westburg, F. Martin, and H. Adrian, J. Appl. Phys. 85, 4803 (1999).

    Article  ADS  Google Scholar 

  19. P. Mandal, Phys. Rev. B 61, 14675 (2000).

    Google Scholar 

  20. A. K. Heilman, Y. Y. Xue, Y. Y. Sun, et al., Phys. Rev. B 61, 8950 (2000).

    Article  ADS  Google Scholar 

  21. B. Chen, C. Vher, D. R. Morelli, et al., Phys. Rev. B 53, 5094 (1996).

    ADS  Google Scholar 

  22. G. Weinreich, Phys. Rev. 107, 317 (1957).

    Article  ADS  Google Scholar 

  23. H. G. Reik, Solid State Commun. 1, 67 (1963); M. I. Klinger, Phys. Lett. 7, 102 (1963).

    Article  Google Scholar 

  24. K. A. Ingebrigtsen, J. Appl. Phys. 41, 454 (1970).

    Article  Google Scholar 

  25. A. R. Hutson and D. L. White, J. Appl. Phys. 33, 40 (1962).

    Article  Google Scholar 

  26. C. Zhu and R. Zheng, J. Appl. Phys. 87, 3579 (2000).

    ADS  Google Scholar 

  27. C. Zhu, R. Zheng, J. Su, and J. He, Appl. Phys. Lett. 74, 3504 (1999).

    ADS  Google Scholar 

  28. R. T. Smith and F. S. Welsh, J. Appl. Phys. 42, 2219 (1971); R. A. Graham, J. Appl. Phys. 48, 2153 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 121, No. 6, 2002, pp. 1374–1383.

Original Russian Text Copyright © 2002 by Ilisavskii, Goltsev, K. Dyakonov, Kartenko, Popov, Yakhkind, V. Dyakonov, Klimov.

Deceased.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ilisavskii, Y.V., Goltsev, A.V., Dyakonov, K.V. et al. Anomalous acoustoelectric effect and the transport properties of thin La0.67Ca0.33Mno3 films. J. Exp. Theor. Phys. 94, 1179–1187 (2002). https://doi.org/10.1134/1.1493171

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1493171

Keywords

Navigation