Skip to main content
Log in

Charge and size distribution of clusters formed in ion sputtering of metals

  • Experimental Instruments and Techniques
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Description of the sputtering of metals by ion bombardment, in which large neutral or charged clusters are produced with the number of atoms N≥5, is further elaborated using simple physical assumptions. The results obtained, represented by simple formulas, are in agreement with experiment. By way of example, calculations of the mass spectra of neutral and singly charged clusters produced by ion sputtering of tantalum and the ionization coefficients of silver clusters are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fundamental and Applied Aspects of Solid Sputtering: Collection of Articles, Ed. by E. S. Mashkova (Mir, Moscow, 1989).

    Google Scholar 

  2. H. H. Andersen and K. Dan, Vidensk. Selsk. Mat. Fys. Medd. 43, 127 (1993).

    Google Scholar 

  3. H. M. Urbassek, W. O. Hofer, and K. Dan, Vidensk. Selsk. Mat. Fys. Medd. 43, 97 (1993).

    Google Scholar 

  4. I. A. Baranov, Yu. V. Martynenko, S. O. Tsepelevich, and Yu. N. Yavlinskii, Usp. Fiz. Nauk 156, 478 (1988) [Sov. Phys. Usp. 31, 1015 (1988)].

    Google Scholar 

  5. Sputtering by Particle Bombardment, Ed. by R. Behrisch and K. Vittmak (Springer-Verlag, New York, 1991; Mir, Moscow, 1998), Vol. 3.

    Google Scholar 

  6. A. Wucher and W. Wahl, Nucl. Instrum. Methods Phys. Res. B 115, 581 (1996).

    Article  ADS  Google Scholar 

  7. S. R. Coon, W. F. Calaway, and M. Y. Pellin, Nucl. Instrum. Methods Phys. Res. B 90, 518 (1994).

    Article  ADS  Google Scholar 

  8. C. Staudt, R. Heinrich, and A. Wucher, Nucl. Instrum. Methods Phys. Res. B 164–165, 677 (2000).

    Google Scholar 

  9. A. Wucher and B. Y. Garrison, J. Chem. Phys. 105, 5999 (1996).

    Article  ADS  Google Scholar 

  10. A. Brunelle, S. Della-Negra, C. Deprun, et al., Int. J. Mass Spectrom. Ion Processes 164, 193 (1997).

    Article  Google Scholar 

  11. Th. J. Colla, H. M. Urbassek, A. Wucher, et al., Nucl. Instrum. Methods Phys. Res. B 143, 284 (1998).

    Article  ADS  Google Scholar 

  12. R. Kissel and H. M. Urbussek, Nucl. Instrum. Methods Phys. Res. B 180, 293 (2001).

    Article  ADS  Google Scholar 

  13. W. Wahl and A. Wucher, Nucl. Instrum. Methods Phys. Res. B 94, 36 (1994).

    Article  ADS  Google Scholar 

  14. V. Kh. Ferleger, M. B. Medvedeva, and I. A. Wojciechowski, Nucl. Instrum. Methods Phys. Res. B 125, 214 (1997).

    ADS  Google Scholar 

  15. I. A. Wojciechowski, P. Bertrand, M. V. Medvedeva, and V. Kh. Ferleger, Nucl. Instrum. Methods Phys. Res. B 179, 32 (2001).

    Article  ADS  Google Scholar 

  16. C. Staudt, R. Heinrich, P. Mazarov, et al., Nucl. Instrum. Methods Phys. Res. B 164–165, 715 (2000).

    Google Scholar 

  17. V. I. Matveev and P. K. Khabibullaev, Dokl. Akad. Nauk 362, 191 (1998) [Dokl. Phys. 43, 544 (1998)].

    Google Scholar 

  18. V. I. Matveev, S. F. Belykh, and I. V. Verevkin, Zh. Tekh. Fiz. 69(3), 64 (1999) [Tech. Phys. 44, 323 (1999)].

    Google Scholar 

  19. S. G. Belykh, V. I. Matveev, I. V. Veryovkin, et al., Nucl. Instrum. Methods Phys. Res. B 155, 409 (1999).

    Article  ADS  Google Scholar 

  20. V. I. Matveev, Zh. Tekh. Fiz. 70(8), 108 (2000) [Tech. Phys. 45, 1063 (2000)].

    Google Scholar 

  21. V. I. Matveev, Pis’ma Zh. Tekh. Fiz. 27(18), 14 (2001) [Tech. Phys. Lett. 27, 761 (2001)].

    MathSciNet  Google Scholar 

  22. E. Fermi, Scientific Works (Nauka, Moscow, 1971), Vol. 1.

    Google Scholar 

  23. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1989, 4th ed.; Pergamon, New York, 1977, 3rd ed.).

    Google Scholar 

  24. L. N. Dobretsov and M. V. Gomoyunova, Emission Electronics (Nauka, Moscow, 1966).

    Google Scholar 

  25. S. G. Belykh, U. Kh. Rasulev, A. V. Samartsev, et al., Nucl. Instrum. Methods Phys. Res. B 136–138, 773 (1998).

    Google Scholar 

  26. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1976; Nauka, Moscow, 1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Tekhnichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 72, No. 5, 2002, pp. 115–119.

Original Russian Text Copyright © 2002 by Matveev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matveev, V.I. Charge and size distribution of clusters formed in ion sputtering of metals. Tech. Phys. 47, 767–771 (2002). https://doi.org/10.1134/1.1486202

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1486202

Keywords

Navigation