Skip to main content
Log in

Silicon nanocrystal formation upon annealing of SiO2 layers implanted with Si ions

  • Semiconductor Structures, Interfaces, and Surfaces
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The formation of silicon nanocrystals in SiO2 layers implanted with Si ions was investigated by Raman scattering, X-ray photoelectron spectroscopy, and photoluminescence. The excess Si concentration was varied between 3 and 14 at. %. It was found that Si clusters are formed immediately after implantation. As the temperature of the subsequent annealing was raised, the segregation of Si accompanied by the formation of Si-Si4 bonds was enhanced but the scattering by clusters was reduced. This effect is attributed to the transformation of loosely packed clusters into compact, separate-phase nanoscale Si precipitates, with the Raman peak observed at 490 cm−1 being related to surface scattering. The process of Si segregation was completed at 1000°C. Nevertheless, characteristic nanocrystal photoluminescence was observed only after annealing at 1100°C. Simultaneously, scattering in the range 495–520 cm−1, typical of nanocrystals, appeared; however, the “surface-related” peak at 490 cm−1 persisted. It is argued that nanocrystals are composed of an inside region and a surface layer, which is responsible for their increased formation temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Shimizu-Iwayama, K. Fujita, S. Nakao, et al., J. Appl. Phys. 75(12), 7779 (1994).

    Article  ADS  Google Scholar 

  2. U. Herrmann, H. H. Dunken, E. Wendler, and W. Wesch, J. Non-Cryst. Solids 204, 237 (1996).

    Article  Google Scholar 

  3. E. Wendler, U. Herrmann, W. Wesch, and H. H. Dunken, Nucl. Instrum. Methods Phys. Res. B 116, 332 (1996).

    ADS  Google Scholar 

  4. G. A. Kachurin, I. E. Tyschenko, K. S. Zhuravlev, et al., Nucl. Instrum. Methods Phys. Res. B 112, 571 (1997).

    Google Scholar 

  5. P. Mutti, G. Ghislotti, S. Bertoni, et al., Appl. Phys. Lett. 66, 851 (1995).

    Article  ADS  Google Scholar 

  6. G. A. Kachurin, A. F. Leier, K. S. Zhuravlev, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 32, 1371 (1998) [Semiconductors 32, 1222 (1998)].

    Google Scholar 

  7. S. P. Withrow, C. W. White, A. Meldrum, et al., J. Appl. Phys. 86, 396 (1999).

    Article  ADS  Google Scholar 

  8. S. Hayashi, T. Nagareda, Y. Kanazawa, and K. Yamamoto, Jpn. J. Appl. Phys. 32, 3840 (1993).

    Google Scholar 

  9. T. Ehara and S. Machida, Thin Solid Films 346, 275 (1999).

    Article  Google Scholar 

  10. K. Jackson, M. R. Pederson, D. Porezag, et al., Phys. Rev. B 55, 2549 (1997).

    Article  ADS  Google Scholar 

  11. Y. Guyot, B. Champagnon, M. Boudeulle, et al., Thin Solid Films 297, 188 (1997).

    Article  Google Scholar 

  12. V. G. Baru, M. I. Elinson, V. A. Zhitov, et al., Mikroélektronika 27, 456 (1998).

    Google Scholar 

  13. S. Veprek, F.-A. Sarrot, and Z. Iqbal, Phys. Rev. B 36, 3344 (1987).

    Article  ADS  Google Scholar 

  14. Ch. Ossadnik, S. Veprek, and I. Gregora, Thin Solid Films 337, 148 (1999).

    Article  Google Scholar 

  15. R. Z. Valiev and I. V. Aleksandrov, Nanostructural Materials Produced by Severe Plastic Deformation (Logos, Moscow, 2000).

    Google Scholar 

  16. H. H. Andersen and E. Johnson, Nucl. Instrum. Methods Phys. Res. B 106, 480 (1995).

    Article  ADS  Google Scholar 

  17. Yu. I. Petrov, Clusters and Small Particles (Nauka, Moscow, 1986).

    Google Scholar 

  18. S. Hayashi and H. Kanamori, Phys. Rev. B 26, 7079 (1982).

    Article  ADS  Google Scholar 

  19. A. F. Leier, L. N. Safronov, and G. A. Kachurin, Fiz. Tekh. Poluprovodn. (St. Petersburg) 33, 389 (1999) [Semiconductors 33, 380 (1999)].

    Google Scholar 

  20. L. A. Nesbit, Appl. Phys. Lett. 46, 38 (1985).

    Article  ADS  Google Scholar 

  21. G. A. Kachurin, S. G. Yanovskaya, M.-O. Ruault, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 34, 1004 (2000) [Semiconductors 34, 965 (2000)].

    Google Scholar 

  22. T. R. Guilinger, M. J. Kelly, D. R. Tallant, et al., Mater. Res. Soc. Symp. Proc. 283, 115 (1993).

    Google Scholar 

  23. J. Zi, H. Buscher, C. Falter, et al., Appl. Phys. Lett. 69, 200 (1996).

    Article  ADS  Google Scholar 

  24. P. Mishra and K. P. Jain, Phys. Rev. B 62, 14790 (2000).

  25. T. Okada, T. Iwaki, K. Yamamoto, et al., Solid State Commun. 49, 809 (1984).

    Article  Google Scholar 

  26. T. Inokuma, Y. Wakayama, T. Muramoto, et al., J. Appl. Phys. 83, 2228 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 36, No. 6, 2002, pp. 685–689.

Original Russian Text Copyright © 2002 by Kachurin, Yanovskaya, Volodin, Kesler, Leier, Ruault.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kachurin, G.A., Yanovskaya, S.G., Volodin, V.A. et al. Silicon nanocrystal formation upon annealing of SiO2 layers implanted with Si ions. Semiconductors 36, 647–651 (2002). https://doi.org/10.1134/1.1485663

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1485663

Keywords

Navigation