Skip to main content
Log in

On the nature of ferroelectricity in Sr1−x A xTiO3 and KTa1−x NbxO3 solid solutions

  • Magnetism and Ferroelectricity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Cluster calculations of the local adiabatic potential for an impurity atom in position A in Sr1−x A xTiO3 (A=Mg, Ca, Ba, Pb, Cd, Zn), as well as for the Nb and O atoms in the Ta-O-Nb chain in KTa1−x NbxO3, were carried out in the nonempirical Hartree-Fock-Roothaan MO-LCAO formalism. For comparison, similar calculations of the local adiabatic potential were performed for a sublattice-A atom in the ATiO3 cubic perovskites (A=Ca, Sr, Ba, Pb), for K and Ta atoms in KTaO3, and for Li in K1−x LixTaO3. The calculations revealed that in all the cases considered, except the Zn, Mg, and Li impurities, the impurity atoms move in single-well potentials and that the corresponding solid solutions are displacive ferroelectrics. Zn in Sr1−x ZnxTiO3 and Mg in Sr1−x MgxTiO3 were found to occupy off-center positions, as does the Li atom in K1−x LixTaO3; i.e., they move in a multiwell local potential. An explanation is proposed for the first-order Raman scattering observed in the paraelectric phase of the above solid solutions with central impurities. The critical concentration x c for the displacive KTa1−x NbxO3 and Sr1−x A xTiO3 solid solutions was calculated in the virtual-crystal approximation within the soft ferroelectric mode theory. The values of x c thus obtained agree with the available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. T. Höchli, K. Knorr, and A. Loidl, Adv. Phys. 39(5), 405 (1990).

    Article  ADS  Google Scholar 

  2. B. E. Vugmeister and M. D. Glinchuk, Rev. Mod. Phys. 62(4), 993 (1990).

    Article  ADS  Google Scholar 

  3. W. Kleemann, Int. J. Mod. Phys. 7(13), 2469 (1993).

    ADS  Google Scholar 

  4. O. E. Kvyatkovskii, Fiz. Tverd. Tela (St. Petersburg) 43(8), 1345 (2001) [Phys. Solid State 43, 1401 (2001)].

    Google Scholar 

  5. V. V. Lemanov, Ferroelectrics 226, 133 (1999).

    Google Scholar 

  6. V. V. Lemanov, in Defects and Surface-Induced Effects in Advanced Perovskites, G. Borstel, A. Krumins, and D. Millers (Kluwer, Dordrecht, 2000), p. 329.

    Google Scholar 

  7. K. A. Müller and H. Burkard, Phys. Rev. B 19(7), 3593 (1979).

    Article  ADS  Google Scholar 

  8. S. H. Wemple, Phys. Rev. 137(5A), 1575 (1965).

    Article  ADS  Google Scholar 

  9. J. H. Barrett, Phys. Rev. 86(1), 118 (1952).

    Article  ADS  Google Scholar 

  10. A. B. Rechester, Zh. Éksp. Teor. Fiz. 60(2), 782 (1971) [Sov. Phys. JETP 33, 423 (1971)].

    Google Scholar 

  11. D. E. Khmel’nitskii and V. L. Shneerson, Fiz. Tverd. Tela (Leningrad) 13(3), 832 (1971) [Sov. Phys. Solid State 13, 687 (1971)].

    Google Scholar 

  12. A. Yamanaka, M. Kataoka, Y. Inaba, et al., Europhys. Lett. 50(5), 688 (2000).

    Article  ADS  Google Scholar 

  13. H. Vogt, Phys. Rev. B 51(13), 8046 (1995).

    Article  ADS  Google Scholar 

  14. H. Uwe and T. Sakudo, Phys. Rev. B 13(1), 271 (1976).

    Article  ADS  Google Scholar 

  15. G. A. Samara and B. Morosin, Phys. Rev. B 8(3), 1256 (1973).

    Article  ADS  Google Scholar 

  16. M. Itoh, R. Wang, Y. Inaguma, et al., Phys. Rev. Lett. 82(17), 3540 (1999).

    Article  ADS  Google Scholar 

  17. M. Itoh, R. Wang, and T. Nakamura, Appl. Phys. Lett. 76(2), 221 (2000).

    Article  ADS  Google Scholar 

  18. O. E. Kvyatkovskii, Solid State Commun. 117(8), 455 (2001).

    Article  Google Scholar 

  19. A. Bussmann-Holder, H. Büttner, and A. R. Bishop, J. Phys.: Condens. Matter 12, L115 (2000).

    Article  ADS  Google Scholar 

  20. U. T. Höchli, H. E. Weibel, and L. A. Boatner, Phys. Rev. Lett. 39(18), 1158 (1977).

    Article  ADS  Google Scholar 

  21. J. G. Bednorz and K. A. Müller, Phys. Rev. Lett. 52(25), 2289 (1984).

    Article  ADS  Google Scholar 

  22. V. V. Lemanov, E. P. Smirnova, and E. A. Tarakanov, Fiz. Tverd. Tela (St. Petersburg) 37(8), 2476 (1995) [Phys. Solid State 37, 1356 (1995)].

    Google Scholar 

  23. V. V. Lemanov, E. P. Smirnova, and E. A. Tarakanov, Phys. Rev. B 54(5), 3151 (1996).

    Article  ADS  Google Scholar 

  24. P. A. Markovin, V. V. Lemanov, O. Yu. Korshunov, et al., Ferroelectrics 184, 269 (1996).

    Google Scholar 

  25. V. V. Lemanov, E. P. Smirnova, and E. A. Tarakanov, Fiz. Tverd. Tela (St. Petersburg) 39(4), 714 (1997) [Phys. Solid State 39, 628 (1997)].

    Google Scholar 

  26. P. A. Markovin, V. V. Lemanov, M. E. Guzhva, and W. Kleemann, Ferroelectrics 199, 121 (1997).

    Google Scholar 

  27. M. E. Guzhva, V. V. Lemanov, P. A. Markovin, and T. A. Shuplygina, Ferroelectrics 218, 93 (1998).

    Google Scholar 

  28. R. Oppermann and H. Thomas, Z. Phys. B 22(4), 387 (1975).

    Google Scholar 

  29. T. Schneider, H. Beck, and E. Stoll, Phys. Rev. B 13(3), 1123 (1976).

    ADS  Google Scholar 

  30. R. Morf, T. Schneider, and E. Stoll, Phys. Rev. B 16(1), 462 (1977).

    Article  ADS  Google Scholar 

  31. R. L. Prater, L. L. Chase, and L. A. Boatner, Phys. Rev. B 23(1), 221 (1981).

    Article  ADS  Google Scholar 

  32. G. A. Samara, Phys. Rev. Lett. 53(3), 298 (1984).

    Article  ADS  Google Scholar 

  33. K. B. Lyons, P. A. Fleury, and D. Rytz, Phys. Rev. Lett. 57(17), 2207 (1986).

    Article  ADS  Google Scholar 

  34. W. Kleemann, F. J. Schäfer, and D. Rytz, Phys. Rev. Lett. 54(18), 2038 (1985).

    Article  ADS  Google Scholar 

  35. U. Bianchi, W. Kleemann, and J. C. Bednorz, J. Phys.: Condens. Matter 6, 1229 (1994).

    Article  ADS  Google Scholar 

  36. W. Kleemann, U. Bianchi, A. Bürgel, et al., Phase Transit. 55, 57 (1995).

    Google Scholar 

  37. R. Kelz, P. Lehnen, and W. Kleemann, J. Korean Phys. Soc. 32, S456 (1998).

    Google Scholar 

  38. H. Uwe, K. B. Lyons, H. L. Carter, and P. A. Fleury, Phys. Rev. B 33(9), 6436 (1986).

    Article  ADS  Google Scholar 

  39. Y. Yacoby, Z. Phys. B 31, 275 (1978).

    Google Scholar 

  40. O. Hanske-Petitpierre, Y. Yacoby, J. Mustre de Leon, et al., Phys. Rev. B 44(13), 6700 (1991).

    Article  ADS  Google Scholar 

  41. W. Kleemann, A. Albertini, R. V. Chamberlin, and J. G. Bednorz, Europhys. Lett. 37(2), 145 (1997).

    Article  ADS  Google Scholar 

  42. V. S. Vikhnin and Yu. A. Borkovskaya, Fiz. Tverd. Tela (Leningrad) 20(12), 3603 (1978) [Sov. Phys. Solid State 20, 2082 (1978)].

    Google Scholar 

  43. B. E. Vugmeister and M. D. Glinchuk, Zh. Éksp. Teor. Fiz. 79(3), 947 (1980) [Sov. Phys. JETP 52, 482 (1980)].

    Google Scholar 

  44. I. I. Tupitsyn, A. Deineka, V. Trepakov, et al., Ferroelectrics 237, 9 (2000).

    Google Scholar 

  45. R. D. Schannon, Acta Crystallogr. A 32, 751 (1976).

    Google Scholar 

  46. V. S. Vikhnin, P. A. Markovin, V. V. Lemanov, and W. Kleemann, J. Korean Phys. Soc. 32, S583 (1998).

    Google Scholar 

  47. J. J. van der Klink, S. Rod, and A. Châtelain, Phys. Rev. B 33(3), 2084 (1986).

    ADS  Google Scholar 

  48. J. J. van der Klink and F. Borsa, Phys. Rev. B 30(1), 52 (1984).

    ADS  Google Scholar 

  49. R. Comes, M. Lambert, and A. Guinier, Solid State Commun. 6, 715 (1968).

    Article  Google Scholar 

  50. K. A. Müller, in Nonlinearity in Condensed Matter, Ed. by A. K. Bishop et al. (Springer, Berlin, 1987), p. 234.

    Google Scholar 

  51. T. P. Dougherty, G. P. Wiederrecht, K. A. Nelson, et al., Science 258, 770 (1992).

    ADS  Google Scholar 

  52. G. H. Kwei, S. J. L. Billinge, S.-W. Cheong, and J. G. Saxton, Ferroelectrics 164, 57 (1995).

    Google Scholar 

  53. N. Sicron, B. Ravel, Y. Yacoby, et al., Phys. Rev. B 50, 13168 (1994).

  54. A. Hüller, Solid State Commun. 7, 589 (1969); Z. Phys. 220, 145 (1969).

    Article  Google Scholar 

  55. R. Comés and G. Shirane, Phys. Rev. 5(5), 1886 (1972).

    ADS  Google Scholar 

  56. H. Krakauer, R. Yu, C.-Z. Wang, et al., J. Phys.: Condens. Matter 11, 3779 (1999).

    Article  ADS  Google Scholar 

  57. M. Holma, N. Takesue, and H. Chen, Ferroelectrics 164, 237 (1995).

    Google Scholar 

  58. O. E. Kvyatkovskii, Ferroelectrics 153(1–4), 201 (1994).

    Google Scholar 

  59. O. E. Kvyatkovskii and B. F. Shchegolev, Izv. Ross. Akad. Nauk, Ser. Fiz. 64(6), 1060 (2000).

    Google Scholar 

  60. C. H. Park and D. J. Chadi, Phys. Rev. B 57(22), R13961 (1998).

  61. R. I. Eglitis, N. E. Christensen, E. A. Kotomin, et al., Phys. Rev. B 56(14), 8599 (1997).

    Article  ADS  Google Scholar 

  62. H. Donnerberg and R. H. Bartram, J. Phys.: Condens. Matter 8, 1687 (1996).

    Article  ADS  Google Scholar 

  63. C. C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951).

    Article  ADS  MATH  Google Scholar 

  64. A. A. Granovsky, http://classic.chem.msu.su/gran/gamess/index.html.

  65. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, et al., J. Comput. Chem. 14, 1347 (1993).

    Article  Google Scholar 

  66. T. H. Dunning, J. Chem. Phys. 55, 716 (1971).

    Google Scholar 

  67. T. H. Dunning and P. J. Hay, in Methods of Electronic Structure Theory, Ed. by H. F. Schaefer III (Plenum, New York, 1977), Vol. 2.

    Google Scholar 

  68. I. Hyla-Kryspin, J. Demuynck, A. Strich, and M. Benard, J. Chem. Phys. 75, 3954 (1981).

    Article  ADS  Google Scholar 

  69. S. Huzinaga and B. Miguel, Chem. Phys. Lett. 175, 289 (1990); S. Huzinaga and M. Klobukowski, Chem. Phys. Lett. 212, 260 (1993).

    Article  Google Scholar 

  70. P. O. Widmark, P. A. Malmqvist, and B. Roos, Theor. Chim. Acta 77, 291 (1990); P. O. Widmark, B. J. Persson, and B. Roos, Theor. Chim. Acta 79, 419 (1991); R. Pou-Amerigo, M. Merchan, I. Nebot-Gil, et al., Theor. Chim. Acta 92, 149 (1995).

    Article  Google Scholar 

  71. W. J. Stevens, H. Basch, and M. Krauss, J. Chem. Phys. 81(12), 6026 (1984); W. J. Stevens, M. Krauss, H. Basch, and P. G. Jasien, Can. J. Chem. 70, 612 (1992).

    Article  ADS  Google Scholar 

  72. EMSL basis set Library, http://www.emsl.pnl.gov:2080/form/basisform.html.

  73. Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, Ed. by K.-H. Hellwege and A. M. Hellwege (Springer, Berlin, 1981), Group III, Vol. 16a.

    Google Scholar 

  74. W. B. Yelon, W. Cochran, G. Shirane, and A. Linz, Ferroelectrics 2, 261 (1971).

    Google Scholar 

  75. H. Chou, S. M. Shapiro, K. B. Lyons, et al., Phys. Rev. B 41(10), 7231 (1990).

    Article  ADS  Google Scholar 

  76. P. M. Gehring, H. Chou, S. M. Shapiro, et al., Ferroelectrics 150, 47 (1993).

    Google Scholar 

  77. A. S. Barker and A. J. Sievers, Rev. Mod. Phys. 47(2), S1 (1975).

    Google Scholar 

  78. V. G. Vaks, Introduction to the Microscopic Theory of Ferroelectrics (Nauka, Moscow, 1973).

    Google Scholar 

  79. R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 49(9), 5828 (1994).

    Article  ADS  Google Scholar 

  80. D. J. Singh, Phys. Rev. B 53(1), 176 (1996).

    Article  ADS  Google Scholar 

  81. E. Cockayne and B. P. Burton, Phys. Rev. B 62(6), 3735 (2000).

    Article  ADS  Google Scholar 

  82. R. E. Cohen and H. Krakauer, Phys. Rev. B 42(10), 6416 (1990).

    Article  ADS  Google Scholar 

  83. W. Zhong, R. D. King-Smith, and D. Vanderbilt, Phys. Rev. Lett. 72(22), 3618 (1994).

    Article  ADS  Google Scholar 

  84. P. H. Ghosez, X. Gonze, and J.-P. Michenaud, Ferroelectrics 206, 205 (1998).

    Google Scholar 

  85. R. E. Cohen and H. Krakauer, Ferroelectrics 136, 65 (1992).

    Google Scholar 

  86. A. V. Postnikov, T. Newmann, and G. Borstel, Phys. Rev. B 50(2), 758 (1994).

    Article  ADS  Google Scholar 

  87. D. J. Singh and L. L. Boyer, Ferroelectrics 136, 95 (1992).

    Google Scholar 

  88. R. Yu and H. Krakauer, Phys. Rev. Lett. 74(20), 4067 (1995).

    Article  ADS  Google Scholar 

  89. C.-Z. Wang, R. Yu, and H. Krakauer, Phys. Rev. B 54(16), 11161 (1996).

  90. A.P. Levanyuk and A. S. Sigov, Defects and Structural Phase Transitions (Gordon & Breach, New York, 1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 44, No. 6, 2002, pp. 1087–1095.

Original Russian Text Copyright © 2002 by Kvyatkovski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kvyatkovskii, O.E. On the nature of ferroelectricity in Sr1−x A xTiO3 and KTa1−x NbxO3 solid solutions. Phys. Solid State 44, 1135–1144 (2002). https://doi.org/10.1134/1.1485043

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1485043

Keywords

Navigation