Skip to main content
Log in

Clustering of defects and impurities in hydrogenated single-crystal silicon

  • Atomic Structures and Nonelectronic Properties of Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Data obtained to date on specific features of defect formation for hydrogenated single-crystal Si are analyzed. It was demonstrated that, in addition to other effects, interaction of H atoms with radiation defects and impurities leads to the formation of large clusters of three main types, namely, vacancy, interstitial, and impurity clusters. The main condition for formation of these clusters is the simultaneous presence of supersaturated solutions of H and defects in the sample. The interaction of H atoms with impurities and defects initiates the decomposition of the supersaturated solid solution of defects and impurities with the formation of precipitates. This leads to the formation of clusters, which are not observed in the absence of H. The mechanisms of formation and structure of clusters are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hydrogen in Semiconductors, Ed. by J. I. Pancove and N. M. Johnson (Academic, San Diego, 1991).

    Google Scholar 

  2. S. J. Pearton, J. W. Corbett, and M. Stavola, Hydrogen in Crystalline Semiconductors (Springer-Verlag, Berlin, 1992).

    Google Scholar 

  3. Hydrogen in Semiconductors II, Ed. by N. H. Nickel (Academic, San Diego, 1999).

    Google Scholar 

  4. S. J. Uftring, M. Stavola, P. M. Williams, and G. D. Watkins, Phys. Rev. B 51, 9612 (1995).

    Article  ADS  Google Scholar 

  5. J. Weber, in Proceedings of the 24th International Conference on Physics of Semiconductors, Ed. by D. Gershoni (World Scientific, Singapore, 1999), p. 209.

    Google Scholar 

  6. V. P. Markevich, M. Suezawa, and K. Sumino, Mater. Sci. Forum 196–201, 915 (1995).

    Google Scholar 

  7. R. E. Pritchard, M. J. Ashwin, J. H. Tucker, et al., Phys. Rev. B 56, 13118 (1997).

    Google Scholar 

  8. R. E. Pritchard, M. J. Ashwin, J. H. Tucker, et al., Semicond. Sci. Technol. 12, 1404 (1997).

    Article  ADS  Google Scholar 

  9. I. S. Zevenbergen, T. Gregorkiewicz, and C. A. J. Ammerlaan, Phys. Rev. B 51, 16746 (1995).

    Google Scholar 

  10. H. J. Stein, J. Electron. Mater. 4, 159 (1975).

    Google Scholar 

  11. Yu. V. Gorelkinskii, Kh. A. Abdullin, and B. N. Mukashev, Physica B (Amsterdam) 273–274, 171 (1999).

    Google Scholar 

  12. B. N. Mukashev, S. Zh. Tokmoldin, M. F. Tamendarov, and V. V. Frolov, Physica B (Amsterdam) 170, 545 (1991).

    ADS  Google Scholar 

  13. M. Suezawa, Physica B (Amsterdam) 273–274, 224 (1999).

    Google Scholar 

  14. Yu. V. Gorelkinskii and N. N. Nevinnyi, Physica B (Amsterdam) 170, 155 (1991).

    ADS  Google Scholar 

  15. N. M. Johnson, C. Herring, and C. G. Van de Walle, Phys. Rev. Lett. 73, 130 (1994).

    Article  ADS  Google Scholar 

  16. R. Murray, Physica B (Amsterdam) 170, 115 (1991).

    ADS  Google Scholar 

  17. M. J. Binns, C. A. Londos, S. A. McQuaid, et al., J. Mater. Sci.: Mater. Electron. 7, 347 (1996).

    Article  Google Scholar 

  18. R. C. Newman, J. Phys.: Condens. Matter 12, R335 (2000).

    Article  ADS  Google Scholar 

  19. R. Jones, S. Öberg, and A. Umerski, Mater. Sci. Forum 83–87, 551 (1992).

    Google Scholar 

  20. S. K. Estreicher, Phys. Rev. B 41, 9886 (1990).

    ADS  Google Scholar 

  21. Y. H. Lee, Y. M. Kim, and J. W. Corbett, Radiat. Eff. 15, 77 (1972).

    Google Scholar 

  22. Y. H. Lee, N. N. Gerasimenko, and J. W. Corbett, Phys. Rev. B 14, 4506 (1976).

    ADS  Google Scholar 

  23. Y. H. Lee and J. W. Corbett, Phys. Rev. 8, 2810 (1974).

    Google Scholar 

  24. Y. H. Lee and J. W. Corbett, Phys. Rev. 13, 2653 (1976).

    ADS  Google Scholar 

  25. G. D. Watkins and J. W. Corbett, Phys. Rev. 134, A1359 (1964).

  26. G. D. Watkins and J. W. Corbett, Phys. Rev. 138, A543 (1965).

    Article  ADS  Google Scholar 

  27. K. L. Brower, Radiat. Eff. 8, 213 (1971).

    Google Scholar 

  28. A. A. Kaplyanskii, Opt. Spektrosk. 16, 329 (1964).

    Google Scholar 

  29. G. D. Watkins, Phys. Rev. B 12, 5824 (1975).

    ADS  MathSciNet  Google Scholar 

  30. J. L. Hastings, S. K. Estreicher, and P. A. Fedders, Phys. Rev. B 56, 10215 (1997).

    Google Scholar 

  31. A. S. Kaminskii, E. V. Lavrov, V. A. Karasyuk, and M. L. W. Thewalt, Phys. Rev. B 50, 7338 (1994).

    Article  ADS  Google Scholar 

  32. A. N. Safonov and E. C. Lightowlers, Mater. Sci. Eng. B 58, 39 (1999).

    Article  Google Scholar 

  33. B. Hourahine, R. Jones, A. N. Safonov, et al., Physica B (Amsterdam) 273–274, 176 (1999).

    Google Scholar 

  34. B. Hourahine, R. Jones, A. N. Safonov, et al., Phys. Rev. B 61, 12594 (2000).

  35. N. N. Gerasimenko, M. Rolle, L. J. Cheng, et al., Phys. Status Solidi B 90, 689 (1978).

    Google Scholar 

  36. B. N. Mukashev, M. F. Tamendarov, and S. Zh. Tokmoldin, Mater. Sci. Forum 38–41, 1039 (1989).

    Google Scholar 

  37. S. Zh. Tokmoldin, B. N. Mukashev, Kh. A. Abdullin, and Yu. V. Gorelkinskii, Physica B (Amsterdam) 273–274, 204 (1999).

    Google Scholar 

  38. B. B. Nielsen, L. Hoffmann, and M. Budde, Mater. Sci. Eng. B 36, 259 (1996).

    Google Scholar 

  39. L. C. Kimerling, Inst. Phys. Conf. Ser. 31, 221 (1977).

    Google Scholar 

  40. Y. H. Lee, K. L. Wang, A. Jaworowski, et al., Phys. Status Solidi A 57, 697 (1980).

    Google Scholar 

  41. L. C. Kimerling, M. J. Asom, J. L. Benton, et al., Mater. Sci. Forum 38–41, 141 (1989).

    Google Scholar 

  42. P. V. Kuchinskii, V. M. Lomako, and A. P. Petrunin, Fiz. Tekh. Poluprovodn. (Leningrad) 23, 1625 (1989) [Sov. Phys. Semicond. 23, 1006 (1989)].

    Google Scholar 

  43. G. D. Watkins, Mater. Sci. Forum 143–147, 9 (1994).

    Google Scholar 

  44. A. Endrös, W. Krühler, and J. Grabmaier, Mater. Sci. Eng. B 4, 35 (1989).

    Google Scholar 

  45. N. M. Johnson, F. A. Ponce, R. A. Street, and R. J. Nemanich, Phys. Rev. B 35, 4166 (1987).

    ADS  Google Scholar 

  46. S. Muto, S. Takeda, and M. Hirata, Mater. Sci. Forum 143–147, 897 (1994).

    Google Scholar 

  47. J. N. Heyman, J. W. Ager, E. E. Haller, et al., Phys. Rev. B 45, 13363 (1992).

  48. Ch. G. Van de Walle, P. J. H. Denteneer, Y. Bar-Yam, and S. T. Pantelides, Phys. Rev. B 39, 10791 (1989).

  49. S. B. Zhang and W. B. Jackson, Phys. Rev. B 43, 12142 (1991).

    Google Scholar 

  50. Early Stages of Oxygen Precipitation in Silicon, Ed. by R. Jones (Kluwer, Dordrecht, 1996).

    Google Scholar 

  51. S. H. Muller, M. Sprenger, E. G. Sieverts, and C. A. J. Ammerlaan, Solid State Commun. 25, 987 (1978).

    Article  Google Scholar 

  52. J. M. Trombetta, G. D. Watkins, J. Hage, and P. Wagner, J. Appl. Phys. 81, 1109 (1997).

    Article  ADS  Google Scholar 

  53. R. C. Newman, J. H. Tucker, N. G. Semaltianos, et al., Phys. Rev. B 54, R6803 (1996).

  54. T. Gregorkiewicz, D. A. van Wezep, H. H. P. Th. Bekman, and C. A. J. Ammerlaan, Phys. Rev. B 35, 3810 (1987).

    Article  ADS  Google Scholar 

  55. J. Michel, J. R. Niklas, and J.-M. Spaeth, Phys. Rev. B 40, 1732 (1989).

    ADS  Google Scholar 

  56. Y. Ohmura, Y. Zohta, and M. Kanazawa, Phys. Status Solidi A 15, 93 (1973).

    Google Scholar 

  57. Yu. V. Gorelkinskii, V. O. Sigle, and Zh. S. Takibaev, Phys. Status Solidi A 22, K55 (1974).

    Google Scholar 

  58. J. Hartung and J. Weber, J. Appl. Phys. 77(1), 118 (1995).

    Article  ADS  Google Scholar 

  59. Yu. V. Gorelkinskii, N. N. Nevinnyi, and Kh. A. Abdullin, J. Appl. Phys. 84, 4847 (1998).

    Article  ADS  Google Scholar 

  60. Yu. V. Gorelkinskii and N. N. Nevinnyi, Nucl. Instrum. Methods 209/210, 677 (1983).

    Google Scholar 

  61. Yu. V. Gorelkinskii, Semicond. Semimet. 61, 25 (1999).

    Google Scholar 

  62. J. Hartung and J. Weber, Phys. Rev. B 48, 14161 (1993).

  63. S. Zh. Tokmoldin, B. N. Mukashev, Kh. A. Abdullin, et al., Mater. Sci. Eng. B 71, 263 (2000).

    Article  Google Scholar 

  64. R. C. Newman, M. J. Ashwin, R. E. Pritchard, and J. H. Tucker, Phys. Status Solidi B 210, 519 (1998).

    ADS  Google Scholar 

  65. Ch. G. Van de Walle and R. A. Street, Phys. Rev. B 49, 14766 (1994).

  66. M. Kohyama and S. Takeda, Phys. Rev. B 60(11), 8075 (1999).

    Article  ADS  Google Scholar 

  67. B. J. Coomer, J. P. Goss, R. Jones, et al., Physica B (Amsterdam) 273–274, 505 (1999).

    Google Scholar 

  68. V. P. Markevich, L. I. Murin, J. L. Lindström, and M. Suezawa, Fiz. Tekh. Poluprovodn. (St. Petersburg) 34(9), 1039 (2000) [Semiconductors 34, 998 (2000)].

    Google Scholar 

  69. J. R. Troxell, A. P. Chatterjee, G. D. Watkins, and L. C. Kimerling, Phys. Rev. B 19, 5336 (1979).

    Article  ADS  Google Scholar 

  70. Kh. A. Abdullin, B. N. Mukashev, and Yu. V. Gorelkinskii, Appl. Phys. Lett. 71, 1703 (1997).

    Article  ADS  Google Scholar 

  71. Yu. V. Gorelkinskii, B. N. Mukashev, and Kh. A. Abdullin, Fiz. Tekh. Poluprovodn. (St. Petersburg) 32, 421 (1998) [Semiconductors 32, 375 (1998)].

    Google Scholar 

  72. G. A. Baraff and M. Schlüter, Phys. Rev. B 30, 3460 (1984).

    ADS  Google Scholar 

  73. G. D. Watkins, in Radiation Damage in Semiconductors: Proceedings of the Radiation Damage Symposium, Paris, 1964 (Academic, New York, 1965), p. 97.

    Google Scholar 

  74. J. N. Heyman, J. W. Ager, E. E. Haller, et al., Phys. Rev. B 45, 13363 (1992).

  75. N. H. Nickel, G. B. Anderson, N. M. Johnson, and J. Walker, Phys. Rev. B 62, 8012 (2000).

    ADS  Google Scholar 

  76. M. Bruel, Electron. Lett. 31, 1201 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 36, No. 3, 2002, pp. 257–268.

Original Russian Text Copyright © 2002 by Abdulin, Gorelkinski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \), Mukashev, Tokmoldin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdulin, K.A., Gorelkinskii, Y.V., Mukashev, B.N. et al. Clustering of defects and impurities in hydrogenated single-crystal silicon. Semiconductors 36, 239–249 (2002). https://doi.org/10.1134/1.1461395

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1461395

Keywords

Navigation