Skip to main content
Log in

Kinetics of the reactions involving CF2 and CF in a pure tetrafluoromethane plasma: II. Production and loss of CF2 and CF in the processes of fluorocarbon polymerization

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Mechanisms for the production and loss of CF2 and CF radicals in a glow discharge in pure CF4 are investigated by the time-resolved laser-induced fluorescence method. The fluorocarbon polymerization processes are shown to contribute significantly to the production of radicals both in the plasma volume and on the surface of the discharge tube. The effective frequencies of both the volume and surface processes of radical production and loss are determined. An analysis of these frequencies allowed us to study the polymerization mechanism in a CF4 plasma at a high relative concentration of F atoms and low ion energy. It is shown that, at elevated pressures, when the density of CxFy polymer particles in the plasma volume becomes comparable with the density of simple fluorocarbon radicals, the electron-impact dissociation of these particles is the main channel for the production of CF2 and CF radicals. Another source of CF2 and CF radicals is related to the reactions of CnF2m+1 unsaturated fluorocarbon particles both in the plasma volume and on the surface of a fluorocarbon film arising on the discharge tube wall. The CxFy fluorocarbon polymer particles form both in the discharge volume and on the fluorocarbon filmsurface also in the course of the film destruction. At lowered pressures, the main channel for the production of CF2 and CF is the direct electron-impact dissociation of CF4 molecules, whereas the loss of these radicals at the tube wall is the main loss channel. The probabilities of the heterogeneous losses of CF2 and CF radicals on the heavily fluorinated surface of the fluorocarbon film at low ion energies are determined. Under these conditions, the surface recombination of the Fch chemisorbed fluorine atoms and CF ph x physisorbed radicals with the production of an activated complex is shown to be the most probable mechanism for the heterogeneous losses of CF2 and CF. The approximate activation energies for the production of Fch · CF ph2 and Fch · CFph surface complexes are found to be 750±70 K and 1030±100 K, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Yasuda, Plasma Polymerization (Academic, New York, 1985).

    Google Scholar 

  2. J.-P. Booth, Plasma Sources Sci. Technol. 8, 249 (1999).

    Article  MathSciNet  ADS  Google Scholar 

  3. G. Cunge and J. P. Booth, J. Appl. Phys. 85, 3952 (1999).

    Article  ADS  Google Scholar 

  4. J. P. Booth, G. Cunge, P. Chabert, and N. Sadeghi, J. Appl. Phys. 85, 3097 (1999).

    Article  ADS  Google Scholar 

  5. A. D. Tserepi, J. Derouard, J.-P. Booth, and N. Sadeghi, J. Appl. Phys. 81, 2124 (1997).

    Article  ADS  Google Scholar 

  6. A. D. Tserepi, W. Schwarzenbach, J. Derouard, and N. Sadeghi, J. Vac. Sci. Technol. A 15, 3120 (1997).

    Article  ADS  Google Scholar 

  7. S. Hayashi, H. Nakagawa, M. Yamanaka, and M. Kubota, Jpn. J. Appl. Phys. 36, 4845 (1997).

    Google Scholar 

  8. T. Arai, M. Goto, K. Horikoshi, et al., Jpn. J. Appl. Phys. 38, 4377 (1999).

    Article  Google Scholar 

  9. K. Sasaki, Y. Kawai, C. Suzuki, and K. Kadota, J. Appl. Phys. 82, 5938 (1997).

    Article  ADS  Google Scholar 

  10. C. Suzuki, K. Sasaki, and K. Kadota, J. Vac. Sci. Technol. A 16, 2222 (1998).

    ADS  Google Scholar 

  11. S. Ito, K. Nakamura, and H. Sugai, Jpn. J. Appl. Phys. 33, L1261 (1994).

    Google Scholar 

  12. M. Haverlag, W. W. Stoffels, E. Stoffels, et al., J. Vac. Sci. Technol. A 14, 384 (1996).

    ADS  Google Scholar 

  13. W. W. Stoffels, E. Stoffels, and K. Tachibana, Rev. Sci. Instrum. 69, 116 (1998).

    Article  ADS  Google Scholar 

  14. W. W. Stoffels, E. Stoffels, and K. Tachibana, J. Vac. Sci. Technol. A 16, 87 (1998).

    Article  ADS  Google Scholar 

  15. R. J. M. M. Snijkers, M. J. M. van Sambeek, M. B. Hoppenbrouwers, and G. M. W. Kroesen, J. Appl. Phys. 79, 8982 (1996).

    Article  ADS  Google Scholar 

  16. C. Suzuki, K. Sasaki, and K. Kadota, J. Appl. Phys. 82, 5321 (1997).

    ADS  Google Scholar 

  17. K. Miyata, M. Hori, and T. Goto, J. Vac. Sci. Technol. A 14, 2083 (1996).

    ADS  Google Scholar 

  18. K. Sasaki, H. Furukawa, C. Suzuki, and K. Kadota, Jpn. J. Appl. Phys. 38, L954 (1999).

    Google Scholar 

  19. M. Haverlag, E. Stoffels, W. W. Stoffels, et al., J. Vac. Sci. Technol. A 12, 3102 (1994).

    Article  ADS  Google Scholar 

  20. C. Suzuki, K. Sasaki, and K. Kadota, Jpn. J. Appl. Phys., Part 2, 36, L824 (1997).

    Google Scholar 

  21. C. Suzuki, K. Sasaki, and K. Kadota, Jpn. J. Appl. Phys., Part 1 37, 5763 (1998).

    Google Scholar 

  22. I. Ishikawa, S. Sasaki, K. Nagaseki, et al., Jpn. J. Appl. Phys., Part 1 36, 4648 (1997).

    Google Scholar 

  23. J. A. O'Neill and J. Singh, J. Appl. Phys. 77, 497 (1995).

    ADS  Google Scholar 

  24. K. Sasaki, H. Furukawa, K. Kadota, and C. Suzuki, J. Appl. Phys. 88, 5585 (2000).

    Article  ADS  Google Scholar 

  25. K. Teii, M. Hori, T. Goto, and N. Ishii, J. Appl. Phys. 87, 7185 (2000).

    ADS  Google Scholar 

  26. K. Takizawa, K. Sasaki, and K. Kadota, J. Appl. Phys. 88, 6201 (2000).

    Article  ADS  Google Scholar 

  27. A. von Keudell, Plasma Sources Sci. Technol. 9, 455 (2000).

    Article  ADS  Google Scholar 

  28. A. von Keudell and W. Moller, J. Appl. Phys. 75, 7718 (1994).

    ADS  Google Scholar 

  29. M. Shiratani, J. Jolly, H. Videlot, and J. Perrin, Jpn. J. Appl. Phys. 36, 4752 (1997).

    Article  Google Scholar 

  30. K. Sasaki and K. Kadota, Jpn. J. Appl. Phys., Part 1 38, 4383 (1999).

    Google Scholar 

  31. A. Kono, M. Haverlag, G. M. W. Kroesen, and F. J. de Hoog, J. Appl. Phys. 70, 2939 (1991).

    Article  ADS  Google Scholar 

  32. T. Arai, M. Goto, D. Takayama, et al., Jpn. J. Appl. Phys. 34, L1392 (1995).

    Article  Google Scholar 

  33. K. Sasaki, Y. Kawai, C. Suzuki, and K. Kadota, J. Appl. Phys. 83, 7482 (1998).

    ADS  Google Scholar 

  34. I. C. Plumb and K. R. Ryan, Plasma Chem. Plasma Process. 6, 205 (1986).

    Google Scholar 

  35. E. Stoffels, W. W. Stoffels, and G. M. W. Kroesen, Plasma Sources Sci. Technol. 10, 311 (2001).

    Article  ADS  Google Scholar 

  36. J.-P. Booth, G. Hancock, N. D. Perry, and M. J. Toogood, J. Appl. Phys. 66, 5251 (1989).

    Article  ADS  Google Scholar 

  37. V. F. Kiselev and O. V. Krylov, Adsorption Processes on Semiconductor and Dielectric Surfaces (Nauka, Moscow, 1978).

    Google Scholar 

  38. V. F. Kiselev, S. N. Kozlov, and A. V. Zoteev, Foundations of Physics of Solid Surface (Mosk. Gos. Univ., Moscow, 1999).

    Google Scholar 

  39. V. A. Radtsig, Khim. Fiz. 14, 125 (1995).

    Google Scholar 

  40. K. Usui, K. Sasaki, C. Suzuki, and K. Kadota, Jpn. J. Appl. Phys., Part 1 38, 4373 (1999).

    Article  Google Scholar 

  41. K. Sasaki, K. Usui, H. Furukawa, et al., Jpn. J. Appl. Phys. 37, 5047 (1998).

    Google Scholar 

  42. Y. C. Kim and M. Boudart, Langmuir 7, 2999 (1991).

    Article  Google Scholar 

  43. V. N. Kondrat'ev and E. E. Nikitin, Kinetics and Mechanisms of Gas-Phase Reactions (Nauka, Moscow, 1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Plazmy, Vol. 28, No. 3, 2002, pp. 272–288.

Original Russian Text Copyright © 2002 by Ivanov, Klopovski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \), Lopaev, Proshina, Rakhimov, Rakhimova, Rulev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, V.V., Klopovskii, K.S., Lopaev, D.V. et al. Kinetics of the reactions involving CF2 and CF in a pure tetrafluoromethane plasma: II. Production and loss of CF2 and CF in the processes of fluorocarbon polymerization. Plasma Phys. Rep. 28, 243–257 (2002). https://doi.org/10.1134/1.1458989

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1458989

Keywords

Navigation