Skip to main content
Log in

RF discharge-based plasma emitter

  • Ion and Plasma Sources
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

An injector of hydrogen atoms for plasma diagnostics in modern tokamaks has been developed at the Budker Institute of Nuclear Physics (Novosibirsk). The ion source of the injector produces a proton (helium ion) beam with a current of up to 2 A (1 A), an ion energy of up to 55 keV, a beam divergence of ∼0.6\deg, and a pulse duration of up to 10 s. An RF discharge-based plasma emitter, which is one of the main parts of the ion source, is described. The emitter diameter is 72 mm, the ion current density is 120 mA/cm2, and the inhomogeneity of the current density is ±6%. The beam is formed by a four-electrode ionoptical system with 163 round apertures. At a current of 2 A, the ion beam consists of 67% protons, 18% H +2 ions, and 15% H +3 ions, the total content of heavier ions in the beam being no higher than 2–3%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. I. Krupnik and V. I. Tereshin, Fiz. Plazmy 20, 157 (1994) [Plasma Phys. Rep. 20, 146 (1994)].

    Google Scholar 

  2. E. Hintz and B. Schweer, Plasma Phys. Controlled Fusion 37, A87 (1995).

    Article  ADS  Google Scholar 

  3. G. V. Roslyakov, in Proceedings of the International School of Plasma Physics, Varenna, 1982, p. 311.

  4. I. V. Shikhovtsev, G. F. Abdrashitov, V. S. Belkin, et al., in Proceedings of the XX Symposium on Fusion Technology, Marseilles, 1998, Vol. 1, p. 605.

  5. I. V. Shikhovtsev, G. F. Abdrashitov, V. I. Davydenko, et al., in Proceedings of the XXIV International Conference on Phenomena in Ionized Gases, Warsaw, 1999, Vol. III, p. 99.

  6. A. A. Ivanov, V. I. Davydenko, P. P. Deichuli, et al., Rev. Sci. Instrum. 71, 3728 (2000).

    Article  ADS  Google Scholar 

  7. I. V. Shikhovtsev, I. I. Averbukh, V. I. Davydenko, et al., in Proceedings of the XXV International Conference on Phenomena in Ionized Gases, Nagoya, 2001, Vol. I, p. 329.

  8. I. M. Zalkind, O. S. Pavlichenko, and V. P. Tarasenko, Vopr. At. Nauki Tekh., Ser. Fiz. Plazmy, Probl. Upravl. Termoyad. Sinteza, No. 2, 69 (1975).

  9. D. M. Gruen, B. Siskind, and R. B. Wright, J. Chem. Phys. 65, 363 (1976).

    Article  ADS  Google Scholar 

  10. D. Spence, F. McMichael, K. R. Lykke, et al., Rev. Sci. Instrum. 67, 1642 (1996).

    ADS  Google Scholar 

  11. C. F. Giese and W. B. Maier, J. Chem. Phys. 39, 739 (1963).

    Google Scholar 

  12. R. Keller, P. Spaudtke, and F. Nouhmayer, in Proceedings of the International Ion Engineering Congress, Kyoto, 1983 (Inst. of Electrical Engineers of Japan, Tokyo, 1983), p. 39.

    Google Scholar 

  13. M. D. Gabovich, Physics and Technology of Plasma Ion Sources (Atomizdat, Moscow, 1972), p. 30.

    Google Scholar 

  14. I. V. Kamenski and G. G. Borg, Comput. Phys. Commun. 113, 1 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Plazmy, Vol. 28, No. 3, 2002, pp. 221–228.

Original Russian Text Copyright © 2002 by Ivanov, Shikhovtsev, Podyminogin, Averboukh, Akhmetov, Davydenko, De\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \)chuli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, A.A., Shikhovtsev, I.V., Podyminogin, A.A. et al. RF discharge-based plasma emitter. Plasma Phys. Rep. 28, 196–203 (2002). https://doi.org/10.1134/1.1458986

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1458986

Keywords

Navigation