Skip to main content

RF-Driven Ion Sources for Neutral Beam Injectors for Fusion Devices

  • Chapter
  • First Online:
Physics and Applications of Hydrogen Negative Ion Sources

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 124))

Abstract

Inductively coupled plasma sources at a frequency of 1 MHz and at power levels of up to 100 kW per cylindrically shaped plasma generation chamber (driver) are used for neutral beam injection (NBI) systems of fusion devices. The modular concept, having several drivers for plasma generation arranged at the backplate of a large expansion chamber, is the baseline for the NBI systems of the international fusion experiment ITER. The reliability in terms of operation and the proven technology of an RF-driven ion source demonstrated for positive hydrogen ions and initiated a development line with size-scaling for negative ions (hydrogen and deuterium) being mandatory for ITER NBI. The cornerstones of the development route toward the ion source of an area of 1 m × 2 m to illuminate with a uniform plasma the multi-aperture extraction system and the generation of negative hydrogen ion densities in the order of 300 A/m2 are described. Addressed are the RF-coupling scheme, reliable operation at low pressure (0.3 Pa for ITER), and the plasma parameters achieved in the ion source. Another building block is the interplay of the magnetic filter field with the biasing of surfaces, the consequences on the plasma uniformity, and in particular, the consequences on the reduction and uniformity of the inevitable co-extracted electrons in such large sources. The cesium coverage of the plasma grid surface, where the negative ions are formed, and the role of cesium redistribution in the ion source come along with the temporal stability of the co-extracted electrons which react, due to the presence of a plasma dominated by negative and positive ions (ion–ion plasma) in front of the plasma grid, much more sensitive than the negative ion current. Of particular challenge is the achievement of high negative ion current densities in long pulses, meaning steady-state operation up to 1 h. The limitation originates from the strong temporal dynamics of the co-extracted electrons as their heat load on the extraction grid reaches the tolerable value, with the consequence that the ion source parameters like RF-power and extraction voltage need to be reduced to avoid damages of the grid system. For a general reduction, the interplay of magnetic filter field and biasing of surfaces is important, whereas cesium management is of utmost relevance for the temporal stabilization. Finally, the activities in the development of the RF-driven ion source for fusion devices beyond ITER, like a DEMOnstration power plant, are addressed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • P. Agostinetti, T. Franke, U. Fantz, C. Hopf, N. Mantel, M.Q. Tran, Fusion Eng. Des. 159, 111628 (2020)

    Article  Google Scholar 

  • R. Albanese et al., Nucl. Fusion 57, 016010 (2017)

    Article  ADS  Google Scholar 

  • M. Bacal, Nucl. Instrum. Methods Phys. Res. Sect. B 37–38, 28 (1989)

    Article  ADS  Google Scholar 

  • M. Boldrin et al., Fus. Eng. Des. 164, 112170 (2021)

    Article  Google Scholar 

  • F. Bonomo, I. Mario, D. Wünderlich, U. Fantz, Fusion Eng. Des. 159, 111760 (2020)

    Article  Google Scholar 

  • S. Briefi, U. Fantz, the NNBI Team, AIP Conf. Proc. 2052, 040005 (2018)

    Article  Google Scholar 

  • S. Briefi, D. Zielke, D. Rauner, U. Fantz, Rev. Sci. Instrum. 93, 023501 (2022)

    Article  ADS  Google Scholar 

  • A. Chakraborty, C. Rotti, M. Bandyopadhyay, M.J. Singh, R. Nair, S. Shah, U.K. Baruah, R. Hemsworth, B. Schunke, IEEE Trans. Plasma Sci. 38, 248 (2010)

    Article  ADS  Google Scholar 

  • A.K. Chakraborty et al., Nucl. Fusion 59, 112024 (2019)

    Article  ADS  Google Scholar 

  • G. Chitarin, N. Marconato, P. Agostinetti, G. Serianni, P. Sonato, AIP Conf. Proc. 1515, 217 (2013)

    Article  ADS  Google Scholar 

  • G. Chitarin, P. Agostinetti, D. Aprile, N. Marconato, P. Veltri, Rev. Sci. Instrum. 85, 02B317 (2014)

    Article  Google Scholar 

  • G. Chitarin, P. Agostinetti, D. Aprile, N. Marconato, P. Veltri, AIP Conf. Proc. 1655, 040008 (2015)

    Article  Google Scholar 

  • D. Ciric et al., Fusion Eng. Des. 82, 610 (2007)

    Article  Google Scholar 

  • M. Claessens, ITER: The Giant fusion reactor, Bringing a Sun to Earth (Springer Nature Switzerland AG, 2020)

    Book  Google Scholar 

  • S. Cristofaro, R. Friedl, U. Fantz, Plasma Res. Express 2, 035009 (2020)

    Article  ADS  Google Scholar 

  • S. Cristofaro, R. Friedl, U. Fantz, Plasma 4, 94 (2021)

    Article  Google Scholar 

  • N. den Harder, G. Orozco, R. Nocentini, B. Heinemann, A. Hurlbatt, F. Bonomo, U. Fantz, P. Veltri, Fusion Eng. Des. 173, 112837 (2021)

    Article  Google Scholar 

  • U. Fantz, H. Falter, P. Franzen, D. Wünderlich, M. Berger, A. Lorenz, W. Kraus, P. McNeely, R. Riedl, E. Speth, Nucl. Fusion 46, S297 (2006)

    Article  ADS  Google Scholar 

  • U. Fantz, P. Franzen, W. Kraus, D. Wünderlich, R. Gutser, M. Berger, NNBI Team, AIP Conf. Proc. 1097, 265 (2009)

    Article  ADS  Google Scholar 

  • U. Fantz, C. Hopf, D. Wünderlich, R. Friedl, M. Fröschle, B. Heinemann, W. Kraus, U. Kurutz, R. Riedl, R. Nocentini, L. Schiesko, Nucl. Fusion 57, 116007 (12 pp) (2017) https://doi.org/10.1088/1741-4326/aa778b

  • U. Fantz, P. Franzen, W. Kraus, L. Schiesko, C. Wimmer, D. Wünderlich, AIP Conf. Proc. 1655, 040001 (2015)

    Article  Google Scholar 

  • U. Fantz, F. Bonomo, M. Fröschle, B. Heinemann, A. Hurlbatt, W. Kraus, L. Schiesko, R. Nocentini, R. Riedl, C. Wimmer, Fusion Eng. Des. 46, 212 (2019)

    Article  Google Scholar 

  • U. Fantz, D. Wünderlich, R. Riedl, B. Heinemann, F. Bonomo, the NNBI-Team, Fusion Eng. Des. 156, 111609 (2020)

    Article  Google Scholar 

  • U. Fantz, S. Briefi, A. Heiler, C. Wimmer, D. Wünderlich, Front. Phys. 9, 709651 (2021)

    Article  Google Scholar 

  • U. Fantz, S. Briefi, M. Fröschle, N. den Harder, A. Heiler, B. Heinemann, C. Hopf, A. Hurlbatt, M. Lindqvist, F. Merk, A. Mimo, R. Nocentini, G. Orozco, G. Starnella, C. Wimmer, D. Wünderlich, D. Yordanov, D. Zielke, J. Phys.: Conf. Ser. 2244, 012049 (2022) https://doi.org/10.1088/1742-6596/2244/1/012049

  • G. Federici, C. Baylard, A. Beaumont, J. Holden, Fusion Eng. Des. 173, 112960 (2021)

    Article  Google Scholar 

  • M. Föschle, U. Fantz, P. Franzen, W. Kraus, R. Nocentini, L. Schiesko, D. Wünderlich, NNBI-Team, Fusion Eng. Des. 88, 1015 (2013)

    Article  Google Scholar 

  • P. Franzen, U. Fantz, Fusion Eng. Des. 89, 2594 (2014)

    Article  Google Scholar 

  • P. Franzen, S. Obermayer, J. Schäffler, A. Stäbler, E. Speth, O. Vollmer, Fusion Eng. Des. 56–57, 487 (2001)

    Article  Google Scholar 

  • P. Franzen, H. Falter, B. Heinemann, C. Martens, U. Fantz, M. Berger, S. Christ-Koch, M. Fröschle, D. Holtum, W. Kraus, S. Leyer, P. McNeely, R. Riedl, R. Süss, S. Obermayer, E. Speth, D. Wünderlich, Fusion Eng. Des. 82, 407 (2007)

    Article  Google Scholar 

  • P. Franzen, L. Schiesko, M. Fröschle, D. Wünderlich, U. Fantz, the NNBI Team, Plasma Phys. Control. Fusion 53, 115006 (2011)

    Article  ADS  Google Scholar 

  • R. Friedl, U. Fantz, Rev. Sci. Instrum. 85, 02B109 (2014)

    Article  Google Scholar 

  • G. Fubiani, L. Garrigues, J.P. Boeuf, Phys. Plasmas 25, 023510 (2018)

    Article  ADS  Google Scholar 

  • M. Hanada, A. Kojima, T. Inoue, K. Watanabe, M. Taniguchi, M. Kashiwagi, H. Tobari, N. Umeda, N. Akino, M. Kazawa, K. Oasa, M. Komata, K. Usui, K. Mogaki, S. Sasaki, K. Kikuchi, S. Nemoto, K. Ohshima, Y. Endo, T. Simizu, N. Kubo, M. Kawai, L.R. Grisham, AIP Conf. Proc. 1390, 536 (2011)

    Article  ADS  Google Scholar 

  • M. Hanada, A. Kojima, H. Tobari, R. Nishikiori, J. Hiratsuka, M. Kashiwagi, N. Umeda, M. Yoshida, M. Ichikawa, K. Watanabe, Y. Yamano, L.R. Grisham, Rev. Sci. Instrum. 87, 02B322 (2016)

    Article  Google Scholar 

  • B. Heinemann, H. Falter, U. Fantz, P. Franzen, M. Fröschle, R. Gutser, W. Kraus, R. Nocentini, R. Riedl, E. Speth, A. Stäbler, D. Wünderlich, P. Agostinetti, T. Jiang, Fusion Eng. Des. 84, 915 (2009)

    Article  Google Scholar 

  • B. Heinemann, U. Fantz, P. Franzen, M. Froeschle, M. Kircher, W. Kraus, C. Martens, R. Nocentini, R. Riedl, B. Ruf, L. Schiesko, C. Wimmer, D. Wuenderlich, the NNBI-Team, Fusion Eng. Des. 88, 512 (2013)

    Article  Google Scholar 

  • B. Heinemann, U. Fantz, W. Kraus, L. Schiesko, C. Wimmer, D. Wünderlich, F. Bonomo, M. Fröschle, R. Nocentini, R. Riedl, New J. Phys. 19, 015001 (2017)

    Article  ADS  Google Scholar 

  • B. Heinemann, U. Fantz, W. Kraus, D. Wünderlich, F. Bonomo, M. Froeschle, I. Mario, R. Nocentini, R. Riedl, C. Wimmer, Fusion Eng. Des. 136, 569 (2018)

    Article  Google Scholar 

  • R.S. Hemsworth, T. Inoue, IEEE Trans. Plasma Sci. 33, 1799 (2005)

    Article  ADS  Google Scholar 

  • R. Hemsworth, H. Decamps, J. Graceffa, B. Schunke, M. Tanaka, M. Dremel, A. Tanga, H.P.L. De Esch, F. Geli, J. Milnes, T. Inoue, D. Marcuzzi, P. Sonato, P. Zaccaria, Nucl. Fusion 49, 045006 (2009)

    Article  ADS  Google Scholar 

  • R. Hemsworth, D. Boilson, P. Blatchford, M. Dalla Palma, G. Chitarin, H. de Esch, F. Geli, M. Dremel, J. Graceffa, D. Marcuzzi, G. Serianni, D. Shah, M. Singh, M. Urbani, P. Zaccaria, New J. Phys. 19, 025005 (2017)

    Article  ADS  Google Scholar 

  • J. Hiratsuka, M. Kashiwagi, M. Ichikawa, N. Umeda, G.Q. Saquilayan, H. Tobari, K. Watanabe, A. Kojima, M. Yoshida, Rev. Sci. Instrum. 91, 023506 (2020)

    Article  ADS  Google Scholar 

  • N. Holtkamp for the ITER Project Team, Fusion Eng. Des. 82, 427 (2007)

    Article  Google Scholar 

  • A. Hurlbatt et al., AIP Adv. 11, 025330 (2021)

    Article  ADS  Google Scholar 

  • Y. Ikeda, N. Umeda, N. Akino, N. Ebisawa, L. Grisham, M. Hanada, A. Honda, T. Inoue, M. Kawai, M. Kazawa, K. Kikuchi, M. Komata, K. Mogaki, K. Noto, F. Okano, T. Ohga, K. Oshima, T. Takenouchi, Y. Tanai, K. Usui, H. Yamazaki, T. Yamamoto, Nucl. Fusion 46, S211 (2006)

    Article  Google Scholar 

  • ITER, 2020, www.iter.org

  • ITER EDA Documentation Series No. 24; ITER Technical Basis, Vienna: INTERNATIONAL ATOMIC ENERGY AGENCY (2002)

    Google Scholar 

  • K. Kim, K. Im, H.C. Kim, S. Oh, J.S. Park, S. Kwon, Y.S. Lee, J.H. Yeom, C. Lee, G.-S. Lee, G. Neilson, C. Kessel, T. Brown, P. Titus, D. Mikkelsen, Y. Zha, Nucl. Fusion 55, 053027 (2015)

    Article  ADS  Google Scholar 

  • A. Kojima, J. Hiratsuka, N. Umeda, M. Hanada, M. Kashiwagi, M. Yoshida, M. Ichikawa, R. Nishikiori, K. Watanabe, H. Tobari, L.R. Grisham, Fusion Eng. Des. 123, 236 (2017)

    Article  Google Scholar 

  • W. Kraus, M. Berger, U. Fantz, P. Franzen, M. Fröschle, B. Heinemann, R. Riedl, E. Speth, A. Stäbler, D. Wünderlich, Rev. Sci. Instrum. 79, 02C108 (2008)

    Article  Google Scholar 

  • W. Kraus, L. Schiesko, C. Wimmer, U. Fantz, B. Heinemann, AIP Conf. Proc. 1869, 030006 (2017)

    Article  Google Scholar 

  • S. Matsuda et al., Fusion Eng. Des. 5, 85 (1987)

    Article  Google Scholar 

  • P. McNeely, D. Wünderlich, the NNBI-Team, Plasma Sources Sci. Technol. 20, 045005 (2011)

    Article  ADS  Google Scholar 

  • A. Mimo, C. Wimmer, D. Wünderlich, U. Fantz, AIP Conf. Proc. 1869, 030019 (2017)

    Article  Google Scholar 

  • A. Mimo, C. Wimmer, D. Wünderlich, U. Fantz, AIP Conf. Proc 2052, 040009 (2018)

    Article  Google Scholar 

  • K. Pandya et al., AIP Conf. Proc. 1869, 030009 (2017)

    Article  Google Scholar 

  • E. Sartori, et al., First operations with caesium of the negative ion source SPIDER, Nucl. Fusion 62, 086022 (2022) https://doi.org/10.1088/1741-4326/ac715e

  • G. Serianni et al., Rev. Sci. Instrum. 91, 023510 (2020)

    Article  ADS  Google Scholar 

  • M.J. Singh, M. Bandyopadhyay, C. Rotti, N.P. Singh, S. Shah, G. Bansal, A. Gahlaut, J. Soni, H. Lakdawala, H. Waghela, I. Ahmed, G. Roopesh, U.K. Baruah, A.K. Chakraborty, Fusion Eng. Des. 86, 732 (2011)

    Article  Google Scholar 

  • M.J. Singh et al., Nucl. Fusion 59, 096034 (2019)

    Article  ADS  Google Scholar 

  • E. Speth, M. Ciric, J.H. Feist, P. Frank, B. Heinemann, W. Kraus, F. Probst, R. Riedl, R. Trainham, O. Vollmer, R. Wilhelm, Fusion Eng. Des. 46, 383 (1999)

    Article  Google Scholar 

  • E. Speth, H. Falter, P. Franzen, U. Fantz, M. Bandyopadhyay, S. Christ, A. Encheva, M. Fröschle, D. Holtum, B. Heinemann, W. Kraus, A. Lorenz, C. Martens, P. McNeely, S. Obermayer, R. Riedl, R. Süss, A. Tanga, R. Wilhelm, D. Wünderlich, Nucl. Fusion 46, S220 (2006)

    Article  Google Scholar 

  • B. Streibl, P.T. Lang, F. Leuterer, J.-M. Noterdaeme, A. Stäbler, Chapter 2: Machine design, fueling, and heating in ASDEX upgrade. Fusion Sci. Technol. 44(3), 578–592 (2003)

    Article  ADS  Google Scholar 

  • F. Taccogna, P. Minelli, S. Longo, Plasma Sources Sci. Technol. 22, 045019 (2013)

    Article  ADS  Google Scholar 

  • Y. Takeiri, Rev. Sci. Instrum. 81, 02B114 (2010)

    Article  Google Scholar 

  • Y. Takeiri, O. Kaneko, K. Tsumori, Y. Oka, K. Ikeda, M. Osakabe, K. Nagaoka, E. Asano, T. Kondo, M. Sato, M. Shibuya, Nucl. Fusion 46, S199 (2006)

    Article  ADS  Google Scholar 

  • V. Toigo et al., New J. Phys. 19, 085004 (2017a)

    Article  ADS  MathSciNet  Google Scholar 

  • V. Toigo et al., Nucl. Fusion 57, 086027 (2017b)

    Article  ADS  Google Scholar 

  • V. Toigo et al., Fusion Eng. Des. 168, 112622 (2021)

    Article  Google Scholar 

  • M.Q. Tran et al., Fusion Eng. Des. 182, 113159 (2022)

    Article  Google Scholar 

  • K. Tsumori, M. Wada, New J. Phys. 19, 045002 (2017)

    Article  ADS  Google Scholar 

  • Y. Wan et al., Nucl. Fusion 57, 102009 (2017)

    Article  ADS  Google Scholar 

  • C. Wimmer, L. Schiesko, U. Fantz, Rev. Sci. Instrum. 87, 02B310 (2016)

    Article  Google Scholar 

  • C. Wimmer, U. Fantz, E. Aza, J. Jovović, W. Kraus, A. Mimo, L. Schiesko, AIP Conf. Proc. 1869, 030021 (2017)

    Article  Google Scholar 

  • C. Wimmer, I. Mario, D. Wünderlich, U. Fantz, the NNBI-Team, AIP Conf. Proc. 2052, 040003 (2018)

    Article  Google Scholar 

  • D. Wünderlich, L. Schiesko, P. McNeely, U. Fantz, P. Franzen, the NNBI-Team, Plasma Phys. Control. Fusion 54, 125002 (2012)

    Article  ADS  Google Scholar 

  • D. Wünderlich, W. Kraus, M. Fröschle, R. Riedl, U. Fantz, B. Heinemann, NNBI-Team, Plasma Phys. Control. Fusion 58, 125005 (2016)

    Article  ADS  Google Scholar 

  • D. Wünderlich, W. Kraus, M. Fröschle, R. Riedl, U. Fantz, B. Heinemann, AIP Conf. Proc. 1869, 030003 (2017)

    Article  Google Scholar 

  • D. Wünderlich, R. Riedl, U. Fantz, B. Heinemann, W. Kraus, the NNBI team, Plasma Phys. Control. Fusion 60, 085007 (2018)

    Article  ADS  Google Scholar 

  • D. Wünderlich, R. Riedl, F. Bonomo, I. Mario, U. Fantz, B. Heinemann, W. Kraus, the NNBI Team, Nucl. Fusion 59, 084001 (2019a)

    Article  ADS  Google Scholar 

  • D. Wünderlich, R. Riedl, I. Mario, A. Mimo, U. Fantz, B. Heinemann, W. Kraus, Rev. Sci. Instrum. 90, 113304 (2019b)

    Article  ADS  Google Scholar 

  • D. Wünderlich, R. Riedl, M. Fröschle, U. Fantz, B. Heinemann, Plasma 4, 172 (2021a)

    Article  Google Scholar 

  • D. Wünderlich, S. Briefi, R. Friedl, U. Fantz, Rev. Sci. Instrum. 92, 123510 (2021b)

    Article  ADS  Google Scholar 

  • D. Wünderlich, C. Wimmer, R. Riedl, F. Bonomo, M. Fröschle, I. Mario, A. Mimo, D. Yordanov, U. Fantz, B. Heinemann, Nucl. Fusion 61, 096023 (2021c)

    Article  ADS  Google Scholar 

  • D. Wünderlich, I.M. Montellano, M. Lindqvist, A. Mimo, S. Mochalskyy, U. Fantz, J. Appl. Phys. 130, 053303 (2021d)

    Article  ADS  Google Scholar 

  • D. Zielke, S. Briefi, U. Fantz, J. Phys. D 54, 155202 (2021a)

    Article  ADS  Google Scholar 

  • D. Zielke, D. Rauner, S. Briefi, S. Lishev, U. Fantz, Plasma Sources Sci. Technol. 30, 065011 (2021b)

    Article  ADS  Google Scholar 

  • D. Zielke, S. Briefi, S Lishe3, U. Fantz, J. Phys.: Conf. Ser. 2244, 012030 (2022) https://doi.org/10.1088/1742-6596/2244/1/012030

Download references

Acknowledgments

The author thanks the NBI team at IPP for the discussions and contributions to this work and acknowledges its dedication to the RF source development for NBI systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursel Fantz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fantz, U. (2023). RF-Driven Ion Sources for Neutral Beam Injectors for Fusion Devices. In: Bacal, M. (eds) Physics and Applications of Hydrogen Negative Ion Sources. Springer Series on Atomic, Optical, and Plasma Physics, vol 124. Springer, Cham. https://doi.org/10.1007/978-3-031-21476-9_16

Download citation

Publish with us

Policies and ethics