Skip to main content
Log in

Structure analysis by reduced data. IV. IEM—A new program for refinement of structure models of crystals

  • Crystallographic Software
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

A new program for the refinement of models of atomic structures by the X-ray, neutron, and electron diffraction data has been described. The program is based on a special form of the goal function including the term responsible for minimizing the difference between the normalized measurements [the interexperimental minimization (IEM) method] and the adaptive nonlinear algorithm of minimization based on the Lavrent’ev-Levenberg-Marquardt regularization. As a result, it became possible to determine a new solution to the problem different from that obtained by the classical least squares method. To a large extent, the program allows one to overcome the effect of parameter correlations on the procedure of refinement and the results obtained. The test of the program on 17 experimental data sets showed the fast and stable convergence in all the cases. Under the identical initial conditions, the new program provided lower reliability factors for most of the crystals studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Dudka, A. A. Loshmanov, and B. A. Maksimov, Kristallografiya 43, 613 (1998) [Crystallogr. Rep. 43, 565 (1998)].

    Google Scholar 

  2. A. P. Dudka and A. A. Loshmanov, Kristallografiya 46, 565 (2001) [Crystallogr. Rep. 46, 511 (2001)].

    Google Scholar 

  3. A. P. Dudka and A. A. Loshmanov, Kristallografiya 46, 1135 (2001) [Crystallogr. Rep. 46 (6), 1049 (2001)].

    Google Scholar 

  4. A. P. Dudka, Kristallografiya 47(1), 156 (2002) [Crystallogr. Rep. 46 (1), 145 (2002)].

    ADS  Google Scholar 

  5. A. P. Dudka, A. A. Loshmanov, and B. A. Maksimov, in Proceedings of the 2nd National Conference on Application of X-rays, Synchroton Radiation, Neutrons and Electrons for Study of Materials (RSNE), Moscow, 1999, p. 33.

  6. A. P. Dudka, A. A. Loshmanov, and B. A. Maksimov, Poverkhnost, No. 2, 2833 (2001).

  7. D. Schwarzenbach and H. D. Flack, Acta Crystallogr., Sect. A: Found. Crystallogr. 47, 134 (1991).

    Article  Google Scholar 

  8. A. N. Tikhonov and V. Ya. Arsenin, Solutions of Ill-Posed Problems (Nauka, Moscow, 1979, 2nd ed.; Halsted Press, New York, 1977).

    Google Scholar 

  9. J. E. Dennis, D. M. Gay, and R. E. Welsch, ACM Trans. Math. Softw. 7(3), 348 (1981).

    Google Scholar 

  10. J. E. Dennis, D. M. Gay, and R. E. Welsch, ACM Trans. Math. Softw. 7(3), 369 (1981).

    Google Scholar 

  11. B. M. Shchedrin, I. N. Bezrukova, and E. M. Burova, in Library of Programs for Study of Structure and Properties of Materials by Diffraction Methods (Mosk. Gos. Univ., Moscow, 1987).

    Google Scholar 

  12. U. Zucker, E. Perenthaler, W. F. Kuhs, et al., J. Appl. Crystallogr. 16, 398 (1983).

    Article  Google Scholar 

  13. V. Petriček, SDS94 (Institute of Physics, Prague, 1994).

    Google Scholar 

  14. A. K. Kulygin, G. G. Lepeshov, and A. S. Avilov, in Proceedings of the Russian Conference on Electron Microscopy, Chernogolovka, 1998, p. 105.

  15. W. H. Zachariasen, Acta Crystallogr. 23, 558 (1967).

    Google Scholar 

  16. P. J. Becker and P. Coppens, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 30, 129 (1974).

    Google Scholar 

  17. P. Coppens, T. N. Guru Row, P. Leung, et al., Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 35, 63 (1979).

    Article  Google Scholar 

  18. B. M. Shchedrin, N. V. Belov, and N. P. Zhidkov, Dokl. Akad. Nauk SSSR 170(5), 1070 (1966) [Sov. Phys. Dokl. 11, 833 (1967)].

    Google Scholar 

  19. A. P. Dudka and V. A. Strel’tsov, Kristallografiya 37, 517 (1992) [Sov. Phys. Crystallogr. 37, 269 (1992)].

    Google Scholar 

  20. É. M. Galeev and V. M. Tikhomirov, Optimization: Theory, Examples, Problems (Éditorial URSS, Moscow, 2000).

    Google Scholar 

  21. International Tables of Crystallography (Kluwer, Dordrecht, 1992), Vol. C, p. 609.

  22. D. Schwarzenbach, S. C. Abrahams, H. D. Flack, et al., Acta Crystallogr., Sect. A: Found. Crystallogr. 51, 565 (1995).

    Article  Google Scholar 

  23. B. M. Shchedrin, Lectures for Students of Faculty of Physics of Moscow State University: Mathematical Aspects of Processing of the Data of Physical Experiments (Mosk. Gos. Univ., Moscow, 1996).

    Google Scholar 

  24. M. Kh. Rabadanov, I. A. Verin, Yu. M. Ivanov, et al., Kristallografiya 46(4), 703 (2001).

    Google Scholar 

  25. T. S. Chernaya, B. A. Maksimov, and A. V. Arekcheeva, in Proceedings of the 2nd National Conference on Application of X-rays, Synchroton Radiation, Neutrons and Electrons for Study of Materials (RSNE), Moscow, 1999, p. 126.

  26. A. P. Dudka, A. A. Loshmanov, and B. P. Sobolev, Kristallografiya 43, 605 (1998) [Crystallogr. Rep. 43, 557 (1998)].

    ADS  Google Scholar 

  27. P. L. Sanger, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 25, 694 (1969).

    Article  Google Scholar 

  28. V. G. Tsirelson, A. S. Avilov, G. G. Lepeshov, et al., submitted to J. Phys. Chem.

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Kristallografiya, Vol. 47, No. 1, 2002, pp. 163–171.

Original Russian Text Copyright © 2002 by Dudka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dudka, A.P. Structure analysis by reduced data. IV. IEM—A new program for refinement of structure models of crystals. Crystallogr. Rep. 47, 152–159 (2002). https://doi.org/10.1134/1.1446925

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1446925

Keywords

Navigation