Skip to main content
Log in

Application of an Augmentation Method to MCR-ALS Analysis for XAFS and Raman Data Matrices in the Structural Change of Isopolymolybdates

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

We measured X-ray absorption fine structure (XAFS) and Raman spectra of isopolymolybdates(VI) in highly concentrated HNO3 solution (0.15–4.0 M), which change their geometries depending on the acid concentration, and performed the simultaneous resolution of the XAFS and Raman data using a multivariate curve resolution by alternating least-squares (MCR-ALS) analysis. In iterative ALS optimization, initial data matrices were prepared by two different methods. For low sensitivity of the XAFS spectra to the geometrical change of the isopolymolybdates, the MCR-ALS result of single XAFS data matrix shows a large dependence on the preparation method of the initial data matrices. This problem is improved by the simultaneous resolution of the XAFS and Raman data: the MCR-ALS result of an augmented matrix of these data has little dependence on the initial data matrices. This indicates that the augmentation method effectively improves the rotation ambiguities in the MCR-ALS analysis of the XAFS data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Iwasawa, K. Asakura, M. Tada, "XAFS Techniques for Catalysis, Nanomaterials, and Surfaces", 2017, Springer, Switzerland.

    Book  Google Scholar 

  2. D. Muller-Bouvet, N. Emery, N. Tassali, E. Panabière, S. Bach, O. Crosnier, T. Brousse, C. Cénac-Morthe, A. Michalowicz, J.P. Pereira-Ramos, Phys. Chem. Chem. Phys., 2017, 19, 27204.

    Article  CAS  PubMed  Google Scholar 

  3. A. Rochet, B. Baubet, V. Moizan, E. Devers, A. Hugon, C. Pichon, E. Payen, V. Briois, J. Phys. Chem. C, 2015, 119, 23928.

    Article  CAS  Google Scholar 

  4. J. Hong, E. Marceau, A.Y. Khodakov, L. Gaberovâ, A. Griboval-Constant, J.-S. Girardon, C.L. Fontaine, V. Briois, ACS Catal., 2015, 5, 1273.

    Article  CAS  Google Scholar 

  5. A. Voronov, A. Urakawa, W.V. Beek, N.E. Tsakoumis, H. Emerich, M. Ronning, Anal. Chim. Acta, 2014, 840, 20.

    Article  CAS  PubMed  Google Scholar 

  6. M. Staniuk, O. Hirsch, N. Kränzlin, R. Böhlen, W. Van Beek, P.M. Abdala, D. Koziej, Chem. Mater., 2014, 26, 2086.

    Article  CAS  Google Scholar 

  7. W.H. Cassinelli, L. Martins, A.R. Passos, S.H. Pulcinelli, C.V. Santilli, A. Rochet, V. Briois, Catal. Today, 2014, 229, 114.

    Article  CAS  Google Scholar 

  8. H.W.P. Carvalho, S.H. Pulcinelli, C.V. Santilli, F. Leroux, F. Meneau, V. Briois, Chem. Mater., 2013, 25, 2855.

    Article  CAS  Google Scholar 

  9. C.A. Nunes, E.C. Resende, I.R. Guimaräes, A.S. Anastâcio, M.C. Guerreiro, Appl. Spectrosc., 2011, 65, 692.

    Article  CAS  PubMed  Google Scholar 

  10. P. Conti, S. Zamponi, M. Giorgetti, M. Berrettoni, W.H. Smyrl, Anal. Chem., 2010, 82, 3629.

    Article  CAS  PubMed  Google Scholar 

  11. V. Girard, D. Chiche, A. Baudot, D. Bazer-Bachi, L. Lemaitre, V. Moizan-Basle, A. Rochet, V. Briois, C. Geantet, Phys. Chem. Chem. Phys., 2019, 21, 8569.

    Article  CAS  PubMed  Google Scholar 

  12. A. Rochet, A. Ribeiro Passos, C. Legens, V. Briois, Catal. Struct. React., 2017, 3, 33.

    CAS  Google Scholar 

  13. A. Rochet, B. Baubet, V. Moizan, E. Devers, A. Hugon, C. Pichon, E. Payen, V. Briois, J. Phys. Chem. C, 2017, 121, 18544.

    Article  CAS  Google Scholar 

  14. A. Rochet, B. Baubet, V. Moizan, C. Pichon, V. Briois, C.R. Chim., 2016, 19, 1337.

    Article  CAS  Google Scholar 

  15. B.L. Caetano, V. Briois, S.H. Pulcinelli, F. Meneau, C.V. Santilli, J. Phys. Chem. C, 2017, 121, 886.

    Article  CAS  Google Scholar 

  16. C. Ruckebusch and L. Blanchet, Anal. Chim. Acta, 2013, 765, 28.

    Article  PubMed  Google Scholar 

  17. R. Tauler, J. Chemom., 2001, 15, 627.

    Article  CAS  Google Scholar 

  18. J.-H. Jiang and Y. Ozaki, Appl. Spectrosc. Rev., 2002, 37, 321.

    Article  Google Scholar 

  19. A. de Juan and R. Tauler, Anal. Chim. Acta, 2003, 500, 195.

    Article  Google Scholar 

  20. M. Garrido, F.X. Rius, M.S. Larrechi, Anal. Bioanal. Chem., 2008, 390, 2059.

    Article  CAS  PubMed  Google Scholar 

  21. A. de Juan and R. Tauler, Crit. Rev. Anal. Chem., 2006, 36, 163.

    Article  Google Scholar 

  22. S.R. Wasserman, P.G. Allen, D.K. Shuh, J.J. Bucher, N.M. Edelstein, J. Synchrotron Radiat., 1999, 6, 284.

    Article  CAS  PubMed  Google Scholar 

  23. A. Manceau, M. Marcus, T. Lenoir, J. Synchrotron Radiat., 2014, 21, 1140.

    Article  CAS  PubMed  Google Scholar 

  24. M.T. Pope, "Heteropoly and Isopoly Oxometalates", 1983, Chap. 6.2.5, Springer, Berlin, 15.

    Google Scholar 

  25. K.-H. Tytko and O. Glemser, "Advances in Inorganic Chemistry and Radiochemistry", ed. H.J. Emeléus and A.G. Sharpe, 1976, Vol. 19, Academic Press, 239.

    Article  Google Scholar 

  26. F.A. Cotton, G. Willkinson, C.A. Murillo, M. Bochmann, "Advanced Inorganic Chemistry", 1999, Chap. 18-C-2, Wiley-Interscience, New York, 925.

    Google Scholar 

  27. K.H. Tytko, G. Baethe, J.J. Cruywagen, Inorg. Chem., 1985, 24, 3132.

    Article  CAS  Google Scholar 

  28. S. Himeno, H. Niiya, T. Ueda, Bull. Chem. Soc. Jpn., 1997, 70, 631.

    Article  CAS  Google Scholar 

  29. S. Himeno and M. Hasegawa, Inorg. Chim. Acta., 1984, 83, L5.

    Article  Google Scholar 

  30. J.M. Coddington and M.J. Taylor, J. Chem. Soc., Dalton Trans., 1990, 41.

    Google Scholar 

  31. D.T. Richens, "The Chemistry of Aqua Ions", 1997, Chap. 6.2.5, John Wiley & Sons, New York, 327.

    Google Scholar 

  32. B. Ravel and M. Newville, J. Synchrotron Radiat., 2005, 12, 537.

    Article  PubMed  Google Scholar 

  33. J. Jaumot, R. Gargallo, A. de Juan, R. Tauler, Chemom. Intell. Lab. Syst., 2005, 76, 101.

    Article  CAS  Google Scholar 

  34. J. Jaumot, A. de Juan, R. Tauler, Chemom. Intell. Lab. Syst., 2015, 140, 1.

    Article  CAS  Google Scholar 

  35. A.R. Jalalvand, S. Ghobadi, H.C. Goicoechea, E. Faramarzi, M. Mahmoudi, Heliyon, 2019, 5, e02153.

    Article  PubMed  PubMed Central  Google Scholar 

  36. M. Maeder, Anal. Chem., 1987, 59, 527.

    Article  CAS  Google Scholar 

  37. W. Windig and D.A. Stephenson, Anal. Chem., 1992, 64, 2735.

    Article  Google Scholar 

  38. M.J. Frisch {etet al.}, "Gaussian 16 Revision A.03", 2016, Gaussian, Inc., Wallingford, CT.

    Google Scholar 

  39. B. Krebs and I. Paulat-Boschen, Acta Crystallogr., Sect. B, 1982, 38, 1710.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morihisa Saeki.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeki, M., Yomogida, T., Matsumura, D. et al. Application of an Augmentation Method to MCR-ALS Analysis for XAFS and Raman Data Matrices in the Structural Change of Isopolymolybdates. ANAL. SCI. 36, 1371–1375 (2020). https://doi.org/10.2116/analsci.20P147

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.20P147

Keywords

Navigation