Skip to main content
Log in

Nodal and periastron precession of inclined orbits in the field of a rotating black hole

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

The inclination of low-eccentricity orbits is shown to significantly affect orbital parameters, in particular, the Keplerian, nodal precession, and periastron rotation frequencies, which are interpreted in terms of observable quantities. For the nodal precession and periastron rotation frequencies of low-eccentricity orbits in a Kerr field, we derive a Taylor expansion in terms of the Kerr parameter at arbitrary orbital inclinations to the black-hole spin axis and at arbitrary radial coordinates. The particle radius, energy, and angular momentum in the marginally stable circular orbits are calculated as functions of the Kerr parameter j and parameter s in the form of Taylor expansions in terms of j to within O[j 6]. By analyzing our numerical results, we give compact approximation formulas for the nodal precession frequency of the marginally stable circular orbits at various s in the entire range of the Kerr parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Bardeen, W. H. Press, and S. Teukolsky, Astrophys. J. 178, 347 (1972).

    Article  ADS  Google Scholar 

  2. J. M. Bardeen and J. A. Petterson, Astrophys. J. Lett. 195, L65 (1975).

    Article  ADS  Google Scholar 

  3. B. Carter, Phys. Rev. 174, 1559 (1968).

    ADS  MATH  Google Scholar 

  4. W. Cui, S. N. Zhang, and W. Chen, Astrophys. J. Lett. 492, L53 (1998); astro-ph/9811023.

    Article  ADS  Google Scholar 

  5. F. de Felice, J. Phys. A 13, 1701 (1980).

    ADS  MathSciNet  Google Scholar 

  6. W. Israel, Phys. Rev. D 2, 641 (1970).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. S. Kato, Publ. Astron. Soc. Jpn. 42, 99 (1990).

    ADS  Google Scholar 

  8. W. Laarakkers and E. Poisson, Astrophys. J. 512, 282 (1999); gr-qc/9709033 (1997).

    Article  ADS  Google Scholar 

  9. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Nauka, Moscow, 1980; Pergamon, Oxford, 1975).

    Google Scholar 

  10. J. Lense and H. Thirring, Phys. Z. 19, 156 (1918).

    Google Scholar 

  11. A. F. Lightman, W. N. Press, R. H. Price, and S. A. Teukolsky, Problem Book on Relativity and Gravitation (Princeton Iniv. Press, Princeton, 1975).

    Google Scholar 

  12. Y. E. Lyubarskij, K. A. Postnov, and M. E. Prokhorov, Mon. Not. R. Astron. Soc. 266, 583 (1994).

    ADS  Google Scholar 

  13. V. C. Man’ko, N. R. Sibgatullin, et al., Phys. Rev. D 49, 5144 (1994).

    ADS  MathSciNet  Google Scholar 

  14. D. Markovic, astro-ph/0009450.

  15. D. Markovic and F. K. Lamb, astro-ph/0009169.

  16. D. Markovic and F. K. Lamb, Astrophys. J. 507, 316 (1998); astro-ph/9801075.

    ADS  Google Scholar 

  17. A. Merloni, M. Vietri, L. Stella, and D. Bini, Mon. Not. R. Astron. Soc. 304, 155 (1999); astro-ph/9811198.

    Article  ADS  Google Scholar 

  18. M. Johnston and R. Ruffini, Phys. Rev. D 10, 2324 (1974).

    Article  ADS  Google Scholar 

  19. Sh. M. Morsink and L. Stella, Astrophys. J. 513, 827 (1999); astro-ph/9808227.

    Article  ADS  Google Scholar 

  20. A. T. Okazaki, S. Kato, and J. Fukue, Publ. Astron. Soc. Jpn. 39, 457 (1987).

    ADS  Google Scholar 

  21. J. C. B. Papaloizou and J. E. Pringle, Mon. Not. R. Astron. Soc. 202, 1181 (1983).

    ADS  Google Scholar 

  22. J. A. Petterson, Astrophys. J. 214, 550 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  23. J. E. Pringle, Mon. Not. R. Astron. Soc. 258, 811 (1992).

    ADS  Google Scholar 

  24. J. E. Pringle, Mon. Not. R. Astron. Soc. 281, 357 (1996).

    ADS  Google Scholar 

  25. J. E. Pringle, Mon. Not. R. Astron. Soc. 292, 136 (1997).

    ADS  Google Scholar 

  26. D. Psaltis, R. Wijnands, J. Homan, et al., Astrophys. J. 520, 763 (1999); astro-ph/9903105.

    ADS  Google Scholar 

  27. R. Ruffini and J. A. Wheeler, Bull. Am. Phys. Soc. 15(11), 76 (1970).

    Google Scholar 

  28. N. I. Shakura, Pis’ma Astron. Zh. 13, 245 (1987) [Sov. Astron. Lett. 13, 99 (1987)].

    ADS  Google Scholar 

  29. N. I. Shakura and R. A. Sunyaev, Astron. Astrophys. 24, 337 (1973).

    ADS  Google Scholar 

  30. N. I. Shakura and R. A. Sunyaev, Mon. Not. R. Astron. Soc. 175, 613 (1976).

    ADS  Google Scholar 

  31. M. Shibata and M. Sasaki, Phys. Rev. D 58, 104011 (1998).

    ADS  Google Scholar 

  32. N. R. Sibgatullin and R. A. Sunyaev, Pis’ma Astron. Zh. 24, 894 (1998) [Astron. Lett. 24, 774 (1998)].

    Google Scholar 

  33. N. R. Sibgatullin and R. A. Sunyaev, Pis’ma Astron. Zh. 26, 813 (2000a) [Astron. Lett. 26, 699 (2000a)].

    Google Scholar 

  34. N. R. Sibgatullin and R. A. Sunyaev, Pis’ma Astron. Zh. 26, 899 (2000b) [Astron. Lett. 26, 772 (2000b)].

    Google Scholar 

  35. H. C. Spruit, Astron. Astrophys. 184, 173 (1987).

    ADS  MATH  Google Scholar 

  36. L. Stella, astro-ph/0011395.

  37. L. Stella and M. Vietri, Astrophys. J. Lett. 492, L59 (1998); asto-ph/9709085.

    Article  ADS  Google Scholar 

  38. L. Stella, M. Vietri, and Sh. M. Morsink, Astrophys. J. Lett. 524, L63 (1999); astro-ph/9907346.

    Article  ADS  Google Scholar 

  39. D. Syer and C. J. Clarke, Mon. Not. R. Astron. Soc. 255, 92 (1992).

    ADS  Google Scholar 

  40. S. Thorne Kip, Astrophys. J. 191, 507 (1974).

    ADS  Google Scholar 

  41. M. van der Kliss, astro-ph/0001167.

  42. M. H. van Kerkwijk, Deepto Chakrabarty, J. E. Pringle, and R. A. M. Wijers, Astrophys. J. Lett. 499, L27 (1998); astro-ph/9802162.

    ADS  Google Scholar 

  43. D. C. Wilkins, Phys. Rev. D 5, 814 (1972).

    Article  ADS  Google Scholar 

  44. M. N. Zaripov, N. R. Sibgatullin, and A. Chamorro, Prikl. Mat. Mekh. 59(5), 750 (1995).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Pis’ma v Astronomicheski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Zhurnal, Vol. 27, No. 12, 2001, pp. 929–939.

Original Russian Text Copyright © 2001 by Sibgatullin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sibgatullin, N.R. Nodal and periastron precession of inclined orbits in the field of a rotating black hole. Astron. Lett. 27, 799–808 (2001). https://doi.org/10.1134/1.1424363

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1424363

Key words

Navigation