Skip to main content
Log in

Epitaxial growth, electronic properties, and photocathode applications of strained pseudomorphic InGaAsP/GaAs layers

  • Semiconductor Structures, Interfaces, and Surfaces
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The results of experimental and theoretical investigations directed toward the development of highly efficient sources of spin-polarized electrons are reported. The sources are based on heteroepitaxial elastically strained films of the quaternary InGaAsP solid solution grown by liquid-phase epitaxy on GaAs substrates. The InGaAsP films synthesized were 0.1–0.2 µm thick with the band gap being within the range of 1.4–1.9 eV and having elastic strains as high as 1%. This provided splitting of the valence band top by 40–60 meV and a degree of the spin polarization P of the electrons photoemitted as high as 80%. The films have a high quantum yield of photoemission Y upon activating to the negative electron affinity state due to the adsorption of Cs and O. Record values for the effective figure of merit P 2 Y are achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. H. Olsen and T. J. Zamerowski, Prog. Cryst. Growth Charact. 2, 309 (1979).

    Google Scholar 

  2. M. B. Panich, Prog. Cryst. Growth Charact. 12, 1 (1986).

    Google Scholar 

  3. M. Razeghi, The MOCVD Challenge (Inst. of Physics Publ., Bristol, 1995), Vol. 2.

    Google Scholar 

  4. K. Nakajima, in GaInAsP Alloy Semiconductors, Ed. by T. P. Pearsall (Wiley, New York, 1982), p. 43.

    Google Scholar 

  5. R. Prepost and T. Maruyama, Annu. Rev. Nucl. Part. Sci. 45, 41 (1995).

    Article  ADS  Google Scholar 

  6. G. Lampel and C. Weisbuch, Solid State Commun. 16, 877 (1975).

    Article  Google Scholar 

  7. D. T. Pierce, R. J. Celotta, G. G. Wang, et al., Rev. Sci. Instrum. 51, 478 (1980).

    Article  ADS  Google Scholar 

  8. T. Nakanishi, H. Aoyagi, H. Horinaka, et al., Phys. Lett. A 158, 345 (1991).

    Article  ADS  Google Scholar 

  9. R. Alley, H. Aoyagi, J. Clendenin, et al., Nucl. Instrum. Methods Phys. Res. A 365, 1 (1995).

    Article  ADS  Google Scholar 

  10. Yu. A. Mamaev, A. V. Subashiev, Yu. P. Yashin, et al., Solid State Commun. 114, 401 (2000).

    Article  Google Scholar 

  11. G. A. Antypas and R. L. Moon, J. Electrochem. Soc. 120, 1574 (1973).

    Google Scholar 

  12. T. Omori, Y. Kurihara, T. Nakanishi, et al., Phys. Rev. Lett. 67, 3294 (1991).

    Article  ADS  Google Scholar 

  13. Y. Kurihara, T. Omori, Y. Takeuchi, et al., KEK Preprint 94-59; SLAC-PUB-6530 (1994).

  14. A. Gomio, T. Suzuki, and S. Iijima, Phys. Rev. Lett. 60, 2645 (1988).

    ADS  Google Scholar 

  15. S. H. Lee and G. B. Stringfellow, J. Appl. Phys. 83, 3620 (1998).

    ADS  Google Scholar 

  16. Yu. A. Mamaev, Yu. A. Yashin, A. V. Subashiev, et al., Phys. Low-Dimens. Struct. 27, 7 (1994).

    Google Scholar 

  17. T. Maruyama, E. L. Garwin, R. Prepost, et al., Phys. Rev. Lett. 66, 2376 (1991).

    Article  ADS  Google Scholar 

  18. V. L. Al’perovich, Yu. B. Bolkhovityanov, A. G. Paulish, and A. S. Terekhov, Pis’ma Zh. Tekh. Fiz. 18(22), 67 (1992) [Sov. Tech. Phys. Lett. 18, 751 (1992)].

    Google Scholar 

  19. V. L. Alperovich, Yu. B. Bolkhovityanov, A. G. Paulish, and A. S. Terekhov, Nucl. Instrum. Methods Phys. Res. A 340, 429 (1994).

    Article  ADS  Google Scholar 

  20. Yu. B. Bolkhovityanov, V. L. Alperovich, A. S. Jaroshevich, et al., J. Cryst. Growth 146, 310 (1995).

    Article  Google Scholar 

  21. Yu. B. Bolkhovityanov, A. M. Gilinsky, N. V. Nomerotsky, et al., J. Cryst. Growth 149, 17 (1995).

    Article  ADS  Google Scholar 

  22. V. L. Alperovich, Yu. B. Bolkhovityanov, A. S. Jaroshevich, et al., J. Appl. Phys. 82, 1214 (1997).

    Article  ADS  Google Scholar 

  23. V. L. Alperovich, Yu. B. Bolkhovityanov, S. I. Chikichev, A. S. Jaroshevich, A. G. Paulish, and A. S. Terekhov, in Indium Phosphide and Related Compounds: Materials, Applications and Devices, Ed. by M. O. Manasreh (Singapore, 2000), Vol. 9, p. 651.

  24. P. Drescher, S. Pluetzer, E. Reichert, et al., Nucl. Instrum. Methods Phys. Res. A 381, 169 (1996).

    Article  ADS  Google Scholar 

  25. Yu. B. Bolkhovityanov, R. I. Bolkhovityanova, and S. I. Chikichev, J. Electron. Mater. 12, 525 (1983).

    Google Scholar 

  26. J. W. Matthews and A. E. Blakeslee, J. Cryst. Growth 27, 118 (1974).

    Article  Google Scholar 

  27. Yu. B. Bolkhovityanov, F. S. Jaroshevich, M. A. Revenko, et al., Semicond. Sci. Technol. 11, 1847 (1996).

    Article  ADS  Google Scholar 

  28. T. Saka, T. Kato, T. Nakanishi, et al., Jpn. J. Appl. Phys. 32, L1837 (1993).

  29. Yu. B. Bolkhovityanov, A. M. Gilinsky, C. W. de Jager, et al., in Proceedings of the 12th International Symposium on High-Energy Spin Physics, Amsterdam, 1997, p. 700.

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 35, No. 9, 2001, pp. 1102–1110.

Original Russian Text Copyright © 2001 by Alperovich, Bolkhovityanov, Chikichev, Paulish, Terekhov, Yaroshevich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alperovich, V.L., Bolkhovityanov, Y.B., Chikichev, S.I. et al. Epitaxial growth, electronic properties, and photocathode applications of strained pseudomorphic InGaAsP/GaAs layers. Semiconductors 35, 1054–1062 (2001). https://doi.org/10.1134/1.1403570

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1403570

Keywords

Navigation