Skip to main content
Log in

Surface anchoring and pitch variation in thin smectic C* layers in an electric field

  • Solids
  • Structure
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The variations of the pitch of smectics C* in thin planar layers in an external electric field and their dependence on the surface anchoring are investigated theoretically. The proposed mechanism of the change in the number of half-turns of the helical structure in a finite-thickness layer upon a change in the applied field is the slip of the director on the surface of the layer through the potential barrier of surface anchoring. The equations describing the pitch variation in an external field and, in particular, the hysteresis in the jumpwise variations of the pitch for opposite directions of field variation are given and analyzed for arbitrary values of the field. For weak fields, it is found that the pitch variation in the layer is of a universal nature and is determined by only one dimensionless parameter, S d= K 22/dW, where K 22 is the Frank torsion modulus, W is the surface anchoring potential, and d is the layer thickness. The possibility of direct determination of the form of the anchoring potential from the results of corresponding measurements is considered. Numerical calculations for the deviation of the director from the direction of alignment on the layer surface and pitch variations, as well as the points of pitch jumps and hysteresis in the field, are made for the Rapini model anchoring potential for values of the parameters for which the pitch variation weakly depends on the direction of the field applied in the plane perpendicular to the spiral axis of smectics C*. The changes in the pitch variation in stronger fields are discussed, and the optimal conditions for observing the discovered effects are formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Proceedings of the 7th International Conference on Ferroelectric Liquid Crystals, Darmstadt University of Technology, Germany, 1999, Ferroelectrics 243–246 (2000).

  2. I. Musevic, R. Blinc, and B. Zeks, The Physics of Ferroelectric and Antiferroelectric Liquid Crystals (World Scientific, Singapore, 2000).

    Google Scholar 

  3. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon Press, Oxford, 1993).

    Google Scholar 

  4. H. Zink and V. A. Belyakov, Mol. Cryst. Liq. Cryst. 265, 445 (1995); Pis’ma Zh. Éksp. Teor. Fiz. 63, 37 (1996) [JETP Lett. 63, 43 (1996)].

    Google Scholar 

  5. H. Zink and V. A. Belyakov, Zh. Éksp. Teor. Fiz. 112, 524 (1997) [JETP 85, 285 (1997)]; Mol. Cryst. Liq. Cryst. 329, 457 (1999).

    Google Scholar 

  6. T. Furukawa, T. Yamada, K. Ishikawa, et al., Appl. Phys. B: Lasers Opt. B60, 485 (1995).

    Google Scholar 

  7. Z. Zhuang, Y. J. Kim, and J. S. Patel, Phys. Rev. Lett. 84, 1168 (2000).

    Article  ADS  Google Scholar 

  8. W. Greubel, Appl. Phys. Lett. 25, 5 (1974).

    Article  Google Scholar 

  9. G. S. Chilaya, Kristallografiya 45, 944 (2000) [Crystallogr. Rep. 45, 871 (2000)].

    Google Scholar 

  10. V. A. Belyakov and E. I. Kats, Zh. Éksp. Teor. Fiz. 118, 560 (2000) [JETP 91, 488 (2000)].

    Google Scholar 

  11. P. G. de Gennes, Solid State Commun. 6, 123 (1968).

    Google Scholar 

  12. R. Dreher, Appl. Phys. Lett. 12, 281 (1968).

    Google Scholar 

  13. V. A. Belyakov and V. E. Dmitrienko, Zh. Éksp. Teor. Fiz. 78, 1568 (1980) [Sov. Phys. JETP 51, 787 (1980)].

    Google Scholar 

  14. R. Dreher, Solid State Commun. 13, 1571 (1973).

    Google Scholar 

  15. W. J. A. Goossens, J. Phys. (Paris) 43, 1469 (1982).

    Google Scholar 

  16. S. A. Pikin, Structural Transformations in Liquid Crystals (Nauka, Moscow, 1981).

    Google Scholar 

  17. S. Chandrasekhar, Liquid Crystals (Cambridge Univ. Press, Cambridge, 1992, 2nd ed.).

    Google Scholar 

  18. P. O. Andreeva, V. K. Dolganov, R. Fouret, et al., Phys. Rev. E 59, 4143 (1999).

    Article  ADS  Google Scholar 

  19. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, New York, 1984).

    Google Scholar 

  20. L. M. Blinov, E. I. Kats, and A. A. Sonin, Usp. Fiz. Nauk 152, 449 (1987) [Sov. Phys. Usp. 30, 604 (1987)].

    Google Scholar 

  21. L. M. Blinov and V. G. Chigrinov, Electrooptics Effects in Liquid Crystal Materials (Springer-Verlag, New York, 1994), Chap. 3.

    Google Scholar 

  22. V. A. Belyakov and V. E. Dmitrienko, Sov. Sci. Rev., Sect. A 13, 1 (1989).

    Google Scholar 

  23. V. A. Belyakov, Diffraction Optics of Complex-Structured Periodic Media (Nauka, Moscow, 1988; Springer-Verlag, New York, 1992).

    Google Scholar 

  24. V. A. Belyakov and V. E. Dmitrienko, in Proceedings of the Second USA-USSR Symposium on Light Scattering in Condensed Matter (Plenum, New York, 1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 120, No. 2, 2001, pp. 430–444.

Original Russian Text Copyright © 2001 by Belyakov, Kats.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belyakov, V.A., Kats, E.I. Surface anchoring and pitch variation in thin smectic C* layers in an electric field. J. Exp. Theor. Phys. 93, 380–392 (2001). https://doi.org/10.1134/1.1402738

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1402738

Keywords

Navigation