Skip to main content
Log in

Dynamics of a light field in a composite integrable model

  • Atoms, Spectra, Radiation
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The inverse scattering transform method is used to solve the model that describes the evolution of light pulses in an optical system that includes a set of media with different nonlinear optical properties. As a physical example, we analyze a model composed of the systems of equations that describe the resonant interaction of a very short light pulse with an energy transition of the medium and the ensuing propagation of the light field in an optical fiber. The constant boundary value of one of the fields is shown to result in an asymptotic quasi-radiative solution of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. P. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Zakharov, Theory of Solitons: the Inverse Scattering Method (Nauka, Moscow, 1980; Consultants Bureau, New York, 1984).

    Google Scholar 

  2. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984; Nauka, Moscow, 1989).

    Google Scholar 

  3. A. I. Maimistov and A. M. Basharov, Nonlinear Optical Waves (Kluwer, Dordrecht, 1999).

    Google Scholar 

  4. Y. Kodama, J. Stat. Phys. 39, 597 (1985); Y. Kodama and A. Hasegawa, IEEE J. Quantum Electron. 23, 510 (1987); G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1989; Mir, Moscow, 1996).

    Article  MathSciNet  Google Scholar 

  5. Optical Solitons-Theory and Experiment, Ed. by J. R. Taylor (Cambridge Univ. Press, Cambridge, 1992), Cambridge Studies in Modern Optics, Vol. 10; H. A. Haus, Proc. IEEE 81, 970 (1993); A. Hasegawa and Y. Kodama, Solitons in Optical Communications (Oxford Univ. Press, Oxford, 1995), Oxford Series in Optical and Imaging Sciences, No.7.

  6. M. Wadati, K. Konno, and Y. Ichikawa, J. Phys. Soc. Jpn. 46, 1965 (1979); D. J. Kaup and A. C. Newell, J. Math. Phys. 19, 798 (1978); H. Eichhorn, Inverse Probl. 1, 193 (1985); J. H. B. Nijhof and G. H. M. Roelofs, J. Phys. A 25, 2403 (1992).

    MathSciNet  Google Scholar 

  7. E. K. Sklyanin, Funkt. Anal. Ego Prilozh. 21, 86 (1987); A. S. Fokas and A. R. Its, Teor. Mat. Fiz. 92, 387 (1992); A. S. Fokas and A. R. Its, Phys. Rev. Lett. 68, 3117 (1992); E. D. Belokos, in Algebraic and Geometrical Methods in Mathematical Physics (Kluwer, Amsterdam, 1996), p. 263.

    MATH  MathSciNet  Google Scholar 

  8. J. Leon and A. V. Mikhailov, Phys. Lett. A 53A, 33 (1999); M. Boiti, J.-G. Caputo, J. Leon, and F. Pempinelli, Inverse Probl. 16, 303 (2000).

    ADS  Google Scholar 

  9. O. M. Kiselev, Teor. Mat. Fiz. 98, 29 (1994).

    MATH  MathSciNet  Google Scholar 

  10. I. R. Gabitov, V. E. Zakharov, and A. V. Mikhailov, Teor. Mat. Fiz. 63, 11 (1985).

    MathSciNet  Google Scholar 

  11. A. S. Fokas and C. R. Menyuk, J. Nonlinear Sci. 9, 1 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  12. D. J. Kaup and C. R. Menyuk, Phys. Rev. A 42, 1712 (1990).

    ADS  Google Scholar 

  13. C. R. Menyuk, Phys. Rev. A 47, 2235 (1993).

    Article  ADS  Google Scholar 

  14. H. Steudel and D. J. Kaup, J. Phys. A 32, 6219 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  15. A. A. Zabolotskii, Zh. Éksp. Teor. Fiz. 115, 1168 (1999) [JETP 88, 642 (1999)].

    Google Scholar 

  16. A. V. Kitaev and A. H. Vartanian, Inverse Probl. 13, 1311 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  17. É. M. Belenov and I. A. Poluéktov, Zh. Éksp. Teor. Fiz. 56, 1407 (1969) [Sov. Phys. JETP 29, 754 (1969)].

    Google Scholar 

  18. I. A. Poluéktov, Yu. M. Popov, and V. S. Roitberg, Pis’ma Zh. Éksp. Teor. Fiz. 18, 638 (1973) [JETP Lett. 18, 373 (1973)].

    Google Scholar 

  19. H. Steudel, Physica D (Amsterdam) 6, 155 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  20. D. S. Butylkin, A. E. Kaplan, Yu. G. Khronopulo, and E. I. Yakubovich, Resonant Interaction of Light with Matter (Nauka, Moscow, 1977).

    Google Scholar 

  21. V. E. Zakharov and A. V. Mikhailov, Pis’ma Zh. Éksp. Teor. Fiz. 45, 279 (1987) [JETP Lett. 45, 349 (1987)].

    Google Scholar 

  22. A. A. Zabolotskii, Phys. Lett. A 124, 500 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  23. N. Tzoar and M. Jain, Phys. Rev. A 23, 1266 (1981).

    Article  ADS  Google Scholar 

  24. K. J. Blow, N. J. Doran, and E. Commins, Opt. Commun. 48, 770 (1983).

    Article  Google Scholar 

  25. D. Marcuse, Appl. Opt. 19, 1653 (1980).

    ADS  Google Scholar 

  26. M. Klauder, E. W. Laedke, K. H. Spatschek, and S. K. Turitsyn, Phys. Rev. E 47, R3844 (1993).

  27. E. V. Doktorov and I. N. Prokopenya, Zh. Éksp. Teor. Fiz. 100, 1129 (1991) [Sov. Phys. JETP 73, 623 ( 1991)].

    ADS  Google Scholar 

  28. V. S. Gerdzhikov, M. I. Ivanov, and P. P. Kulish, Teor. Mat. Fiz. 44, 342 (1980).

    MathSciNet  Google Scholar 

  29. J.-H. Lee, Trans. Am. Math. Soc. 314, 107 (1989).

    ADS  MATH  Google Scholar 

  30. X. Zhou, Commun. Pure Appl. Math. 42, 895 (1989); X. Zhou, SIAM (Soc. Ind. Appl. Math.) J. Math. Anal. 20, 966 (1989).

    MATH  Google Scholar 

  31. X. Zhou, J. Diff. Eqns. 115, 277 (1995).

    MATH  Google Scholar 

  32. M. J. Ablowitz, A. Ramani, and H. Segur, J. Math. Phys. 21, 1006 (1980).

    ADS  MathSciNet  Google Scholar 

  33. Higher Transcendental Functions (Bateman Manuscript Project), Ed. by A. Erdelyi (McGraw-Hill, New York, 1953; Nauka, Moscow, 1974), Vol. 2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 120, No. 2, 2001, pp. 252–268.

Original Russian Text Copyright © 2001 by Zabolotskii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zabolotskii, A.A. Dynamics of a light field in a composite integrable model. J. Exp. Theor. Phys. 93, 221–235 (2001). https://doi.org/10.1134/1.1402725

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1402725

Keywords

Navigation