Skip to main content
Log in

Tunneling in single-layer Bi2Sr2CuO6+δ single crystals in high magnetic field

  • Solids
  • Electronic Properties
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

In tunneling experiments with high-quality single crystals of a single-layer cuprate superconductor Bi2Sr2CuO6+δ using the break junction and point-contact techniques at T<T c, the coexistence of the superconducting-state gap and the normal-state gap was observed. The values of the superconducting energy gap 2Δp−p are in the range from 13.4 to 15 meV (Δp−p=6.7–7.5 meV). The values of 2Δp−p are similar for two samples with T c=4 K and for two samples with T c=9–10 K and are independent of the carrier concentration. The normal-state gap, with the magnitude approximately equal to 50 meV, persists at T<T c and in the magnetic field HH c2 up to 28 T. After the transition of the sample to the normal state, the intensity of the tunneling conductance rapidly decreases with increasing magnetic field strength and temperature. The observed large broadening of the tunneling spectra and large zero-bias conductances can be caused by a strong angular dependence of the superconducting gap. The tunneling results are in full agreement with the data of the angle-resolved photoemission spectroscopy measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. I. Vedeneev, K. A. Kuznetsov, V. A. Stepanov, et al., Pis’ma Zh. Éksp. Teor. Fiz. 57, 338 (1993) [JETP Lett. 57, 352 (1993)].

    Google Scholar 

  2. S. I. Vedeneev, A. G. M. Jansen, P. Samuely, et al., Phys. Rev. B 49, 9823 (1994).

    Article  ADS  Google Scholar 

  3. J. M. Harris, Z.-X. Shen, P. J. White, et al., Phys. Rev. B 54, 15665 (1996).

  4. D. S. Marshall, D. S. Dessan, A. G. Loeser, et al., Phys. Rev. Lett. 76, 4841 (1996).

    Article  ADS  Google Scholar 

  5. H. Ding, T. Yokoya, J. C. Campuzano, et al., Nature (London) 382, 51 (1996).

    Article  ADS  Google Scholar 

  6. A. V. Fedorov, T. Valla, P. D. Johnson, et al., Phys. Rev. Lett. 82, 2179 (1999).

    Article  ADS  Google Scholar 

  7. C. Berthier, M.-H. Julien, O. Bakharev, et al., Physica C (Amsterdam) 282–287, 227 (1997).

    Google Scholar 

  8. Ch. Renner, B. Revaz, J.-Y. Genoud, et al., Phys. Rev. Lett. 80, 149 (1998).

    ADS  Google Scholar 

  9. V. Emery and S. A. Kivelson, Nature (London) 374, 434 (1995).

    Article  ADS  Google Scholar 

  10. T. Hotta, M. Mayr, and E. Dagotto, Phys. Rev. B 60, 13085 (1999).

  11. J. Maly, B. Jankó, and K. Levin, Phys. Rev. B 59, 1354 (1999).

    Article  ADS  Google Scholar 

  12. S. I. Vedeneev, P. Samuely, A. G. M. Jansen, et al., Z. Phys. B: Condens. Matter 83, 343 (1991).

    Article  Google Scholar 

  13. S. I. Vedeneev, A. G. M. Jansen, E. Haanappel, et al., Phys. Rev. B 60, 12467 (1999).

    Google Scholar 

  14. J. M. Harris, P. J. White, Z.-X. Shen, et al., Phys. Rev. Lett. 79, 143 (1997).

    ADS  Google Scholar 

  15. S. I. Vedeneev, A. G. M. Jansen, and P. Wyder, Phys. Rev. B 62, 5997 (2000).

    Article  ADS  Google Scholar 

  16. S. I. Vedeneev, Pis’ma Zh. Eksp. Teor. Fiz. 68, 217 (1998) [JETP Lett. 68, 230 (1998)].

    Google Scholar 

  17. V. P. Martovitsky, J. I. Gorina, and G. A. Kaljuzhnaia, Solid State Commun. 96, 893 (1995); J. I. Gorina, G. A. Kaljuzhnaia, V. P. Martovitsky, et al., Solid State Commun. 108, 275 (1998).

    Article  Google Scholar 

  18. A. Maeda, M. Hase, I. Tsukada, et al., Phys. Rev. B 41, 6418 (1990).

    ADS  Google Scholar 

  19. Y. Ando, G. S. Boebinger, A. Passner, et al., Phys. Rev. B 56, 8530 (1997).

    Article  ADS  Google Scholar 

  20. P. Mallet, D. Roditchev, W. Sacks, et al., Phys. Rev. B 54, 13324 (1996).

  21. R. C. Dynes, V. Narayanamurti, and J. P. Garno, Phys. Rev. Lett. 41, 1509 (1978).

    Article  ADS  Google Scholar 

  22. K. Kitazawa, Science 271, 313 (1996).

    ADS  MathSciNet  Google Scholar 

  23. E. L. Wolf, Principles of Electron Tunneling Spectroscopy (Oxford Univ. Press, New York, 1985; Naukova Dumka, Kiev, 1990).

    Google Scholar 

  24. L. Esaki and P. J. Stiles, Phys. Rev. Lett. 16, 574 (1966).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 119, No. 5, 2001, pp. 979–986.

Original English Text Copyright © 2001 by S. Vedeneev, Szabó, Jansen, I. Vedeneev.

This article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vedeneev, S.I., Szabó, P., Jansen, A.G.M. et al. Tunneling in single-layer Bi2Sr2CuO6+δ single crystals in high magnetic field. J. Exp. Theor. Phys. 92, 851–857 (2001). https://doi.org/10.1134/1.1378178

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1378178

Keywords

Navigation