Skip to main content
Log in

Multigap superconductivity in doped p-type cuprates

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Andreev and tunneling spectroscopy studies of Bi2Sr2Ca n − 1Cu n O2n + 4 + δ, HgBa2Ca n − 1Cu n O2n + 2 + δ and Tl2Ba2Ca n − 1Cu2n + 4 + δ have shown that superconductivity in single-layer (n = 1) and two-layer (n = 2) phases has a single-gap character. Qualitatively different results were obtained for three-layer phases. In doped p-type Hg-1223, Bi-2223, and Tl-2223 samples two (or three) superconducting gaps were observed. The existence of multigap superconductivity in superconducting cuprates with n ≥ 3 is explained by a difference in doping levels of outer (OP) and internal (IP) CuO2 planes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Abrikosov, Physica C 341–348, 97 (2000); Physica C 317–318, 154 (1999); cond-mat/9912394 (1999).

    Article  Google Scholar 

  2. K. Gofron, J. C. Campuzano, A. A. Abrikosov, M. Lindroos, A. Bansil, H. Ding, D. Koelling, and B. Dabrowski, Phys. Rev. Lett. 73, 3302 (1994).

    Article  ADS  Google Scholar 

  3. C. Kendziora, R. J. Kelley, and M. Onellion, Phys. Rev. Lett. 77, 727 (1996).

    Article  ADS  Google Scholar 

  4. M. R. Presland, J. L. Tallon, R. G. Buckley, R. S. Liu, and N. E. Flower, Physica C 176, 95 (1991).

    Article  ADS  Google Scholar 

  5. Ya. G. Ponomarev, H. H. Van, S. A. Kuzmichev, S. V. Kulbachinskii, M. G. Mikheev, M. V. Sudakova, and S. N. Tchesnokov, JETP Lett. 96, 743 (2012).

    Article  ADS  Google Scholar 

  6. Ya. Ponomarev, M. Mikheev, M. Sudakova, S. Tchesnokov, and S. Kuzmichev, Phys. Status Solidi C 6, 2072 (2009).

    Article  ADS  Google Scholar 

  7. H. Mukuda, S. Shimizu, A. Iyoi, and Y. Kitaoka, J. Phys. Soc. Jpn. 81, 011008 (2012).

    Article  ADS  Google Scholar 

  8. X.-J. Chen, V. V. Struzhkin, Zh. Wu, R. J. Hemley, and H. Mao, Phys. Rev. B 75, 134504 (2007).

    Article  ADS  Google Scholar 

  9. V. A. Alyoshin, D. A. Mikhailova, E. B. Rudnyi, and E. V. Antipov, Physica C 383, 59 (2002).

    Article  ADS  Google Scholar 

  10. S. N. Putilin, E. V. Antipov, O. Chmaissem, and M. Marezio, Nature 362, 226 (1993); S. N. Putilin, E. V. Antipov, and M. Marezio, Physica 212, 266 (1993).

    Article  ADS  Google Scholar 

  11. A. Krapf, G. Lacayo, G. Kastnerm, et al., Supercond. Sci. Technol. 4, 237 (1991).

    Article  ADS  Google Scholar 

  12. T. E. Oskina, Ya. G. Ponomarev, H. Pielm, et al., Phys. C: Supercond. 266, 115 (1996).

    Article  ADS  Google Scholar 

  13. G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B 25, 4515 (1982); M. Octavio, M. Tinkham, G. E. Blonder, and T. M. Klapwijk, Phys. Rev. B 27, 6739 (1983); K. Flensberg, J. B. Hansen, and M. Octavio, Phys. Rev. B 38, 8707 (1988).

    Article  ADS  Google Scholar 

  14. R. Kummel, U. Gunsenheimer, and R. Nicolsky, Phys. Rev. B 42, 3992 (1990).

    Article  ADS  Google Scholar 

  15. J. C. Cuevas, A. Martin-Rodero, and A. Levy Yeyati, Phys. Rev. B 54, 7366 (1996); A. Poenicke, J. C. Cuevas, and M. Fogelström, Phys. Rev. B 65, 220510R (2002).

    Article  ADS  Google Scholar 

  16. T. P. Devereaux and P. Fulde, Phys. Rev. B 47, 14638 (1993).

    Article  ADS  Google Scholar 

  17. D. Daghero and R. S. Gonnelli, Supercond. Sci. Technol. 23, 043001 (2010).

    Article  ADS  Google Scholar 

  18. E. S. Itskevich, V. F. Kraïdenov, and I. G. Kuzemskaya, J. Exp. Theor. Phys. 91, 562 (2000).

    Article  ADS  Google Scholar 

  19. B. Vignolle, D. Vignolles, D. LeBoeuf, S. Lepault, B. Ramshaw, R. Liang, D. A. Bonnb, W. N. Hardyb, N. Doiron-Leyraud, A. Carrington, N. E. Hussey, L. Taillefer, and C. Proust, C. R. Phys. 12, 446 (2011).

    Article  ADS  Google Scholar 

  20. S. V. Kulbachinskii, Ya. G. Ponomarev, L. M. Fisher, and O. V. Belyaeva, JETP Lett. 96, 35 (2012).

    Article  ADS  Google Scholar 

  21. W. Guyard, M. Le Tacon, M. Cazayous, A. Sacuto, A. Georges, and D. Colson, arXiv:0708.3732v1 [cond-mat.supr-con] (2007).

  22. N. Miyakawa, K. Tokiwa, T. Watanabe, A. Iyo, and Y. Tanaka, AIP Conf. Proc. 850, 397 (2006).

    Article  ADS  Google Scholar 

  23. V. Z. Kresin and S. Wolf, Phys. Rev. B 46, 6458 (1992).

    Article  ADS  Google Scholar 

  24. N. Klein, N. Tellmann, H. Schulz, K. Urban, S. A. Wolf, and V. Z. Kresin, Phys. Rev. Let. 71, 3355 (1993).

    Article  ADS  Google Scholar 

  25. B. A. Aminov, M. A. Hein, G. Müller, et al., J. Supercond. 7, 361 (1994).

    Article  ADS  Google Scholar 

  26. H. J. Choi, D. Roundy, H. Sun, et al., Nature 418, 758 (2002).

    Article  ADS  Google Scholar 

  27. A. J. Leggett, Prog. Theor. Phys. 36, 901 (1966).

    Article  ADS  Google Scholar 

  28. Ya. G. Ponomarev, S. A. Kuzmichev, M. G. Mikheev, et al., Solid State Commun. 129, 85 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. G. Ponomarev.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponomarev, Y.G., Alyoshin, V.A., Antipov, E.V. et al. Multigap superconductivity in doped p-type cuprates. Jetp Lett. 100, 126–132 (2014). https://doi.org/10.1134/S0021364014140100

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364014140100

Keywords

Navigation