Skip to main content
Log in

The structure of shocks in the atmospheres of pulsating stars

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The structure of shocks propagating through partially ionized hydrogen gas with characteristics typical of the atmospheres of RR Lyr, W Vir, and RV Tau type variables is analyzed in terms of a self-consistent solution of the equations of gas dynamics, atomic kinetics, and radiation transfer. The solutions were obtained for shock waves with velocities 20 km/s≤U 1≤90 km/s and unperturbed hydrogen gas with temperatures 3000 K≤T 1≤9000 K and density ρ1=10−10 g/cm3. The fraction of the energy of the gas-dynamic flux converted into radiation increases with the shock amplitude, and the ratio of the radiation flux emitted by the shock to the gas kinetic energy flux is 0.4≲ℜ≲0.8 for the velocities U 1 considered. This ratio also increases slightly with the ambient gas temperature T 1 due to an increase in hydrogen ionization in the radiative precursor. The flux emitted by the leading edge of the shock opposite to the gas flow is several percent higher than the flux emitted in the opposite direction by the trailing edge of the shock. Radiation is mostly concentrated in the Balmer continuum, and the region of efficient Lyman radiation transfer includes gas layers located near the viscous jump (δX=±104 cm). The final gas-compression ratio in units of the limiting compression corresponding to an isothermal approximation is virtually independent of the shock amplitude, and increases with the unperturbed gas temperature from r≈0.5 at T 1=3000 K to r≈0.9 at T 1=9000 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. A. Abt, Astrophys. J., Suppl. Ser. 1, 63 (1954).

    Article  ADS  Google Scholar 

  2. G. Wallerstein, Astrophys. J. 127, 583 (1958).

    Article  ADS  Google Scholar 

  3. G. Wallerstein, Astrophys. J. 130, 560 (1959).

    ADS  Google Scholar 

  4. R. Scott and S. R. Baird, Publ. Astron. Soc. Pac. 94, 850 (1982).

    ADS  Google Scholar 

  5. S. R. Baird, Publ. Astron. Soc. Pac. 96, 72 (1984).

    Article  ADS  Google Scholar 

  6. L. A. Willson, Astrophys. J. 205, 172 (1976).

    Article  ADS  Google Scholar 

  7. M. W. Fox, P. R. Wood, and M. A. Dopita, Astrophys. J. 286, 337 (1984).

    Article  ADS  Google Scholar 

  8. D. Gillet, Astron. Astrophys. 192, 206 (1988).

    ADS  Google Scholar 

  9. L. A. Willson and S. J. Hill, Astrophys. J. 228, 854 (1979).

    Article  ADS  Google Scholar 

  10. Yu. A. Fadeyev, Lect. Notes Phys. 305, 174 (1988).

    ADS  Google Scholar 

  11. Ya. B. Zel'dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Fizmatgiz, Moscow, 1963; Academic, New York, 1966, 1967), Vols. 1, 2.

    Google Scholar 

  12. I. A. Klimishin, Shock Waves in Stellar Envelopes [in Russian] (Nauka, Moscow, 1984).

    Google Scholar 

  13. D. Mihalas and B. W. Mihalas, Foundations of Radiation Hydrodynamics (Oxford Univ. Press, New York, 1984).

    Google Scholar 

  14. A. L. Velikovich and M. A. Liberman, Physics of Shock Waves in Gases and Plasmas [in Russian] (Nauka, Moscow, 1987).

    Google Scholar 

  15. Yu. A. Fadeyev and D. Gillet, Astron. Astrophys. 333, 687 (1998).

    ADS  Google Scholar 

  16. Yu. A. Fadeyev and D. Gillet, Astron. Astrophys. 354, 349 (2000).

    ADS  Google Scholar 

  17. P. Feautrier, C. R. Acad. Sci. Paris 258, 3189 (1964).

    ADS  Google Scholar 

  18. G. B. Rybicki and D. G. Hummer, Astron. Astrophys. 245, 171 (1991).

    ADS  Google Scholar 

  19. R. E. Marshak, Phys. Fluids 1, 24 (1958).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Astronomicheski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Zhurnal, Vol. 78, No. 5, 2001, pp. 421–431.

Original Russian Text Copyright © 2001 by Fadeev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fadeev, Y.A. The structure of shocks in the atmospheres of pulsating stars. Astron. Rep. 45, 361–370 (2001). https://doi.org/10.1134/1.1369799

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1369799

Keywords

Navigation