Skip to main content
Log in

Selective multiphoton IR dissociation of SF6 molecules under nonequilibrium conditions of a pulsed gasodynamically cooled molecular flow interacting with a solid surface

  • Atoms, Spectra, Radiation
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The process of the isotope-selective multiphoton IR dissociation of SF6 molecules under the non-equilibrium conditions of a pulsed gasodynamically cooled molecular flow interacting with a solid surface was experimentally studied. The SF6 molecules dissociate as a result of excitation in a shock wave generated in the flow, in the flow incident onto the sold surface, and in an unperturbed flow (in the absence of the solid). The experiment was based on detecting the luminescence from HF* molecules (λ ≈ 2.5) μm) accompanying the SF6 dissociation in the presence of H2 or CH4, the emission intensity being a measure of the SF6 dissociation yield. The molecular beam parameters were studied. The time-of-flight spectra of SF6 in the flow interacting with the surface were measured under various experimental conditions. The spectral and energy characteristics of the SF6 dissociation process were determined in the flow interacting with the solid surface and in the unperturbed flow. The dissociation product (SF4) yield was measured and the coefficient of its enrichment with the 34S isotope was determined. It is demonstrated that, using the shock wave formation, it is possible to increase the efficiency of the isotope-selective dissociation of SF6 molecules. An explanation of the observed results is proposed. The gas density and temperature in the incident flow and in the shock wave were estimated. The results are analyzed and compared to the other published data on the SF6 dissociation in a molecular beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Bagratashvili, V. S. Letokhov, A. A. Makarov, and E. A. Ryabov, Multiple Photon Infrared Laser Photophysics and Photochemistry (Academic, New York, 1985).

    Google Scholar 

  2. Multiple Photon Excitation and Dissociation of Polyatomic Molecules, Ed. by C. D. Cantrell (Springer-Verlag, Berlin, 1986).

    Google Scholar 

  3. Laser Induced Chemical Processes, Ed. by Y. Steinfeld (Plenum, New York, 1981).

    Google Scholar 

  4. J. L. Lyman, in Laser Spectroscopy and Its Applications (Marcel Dekker, New York, 1987).

    Google Scholar 

  5. R. V. Ambartsumyan, Yu. A. Gorokhov, V. S. Letokhov, et al., Zh. Éksp. Teor. Fiz. 71, 440 (1976) [Sov. Phys. JETP 44, 231 (1976)].

    ADS  Google Scholar 

  6. M. C. Gower and K. W. Billman, Opt. Commun. 20, 123 (1977).

    Article  ADS  Google Scholar 

  7. U. Del Bello, V. Churakov, W. Fuss, et al., Appl. Phys. B: Photophys. Laser Chem. B 42, 147 (1987).

    Google Scholar 

  8. R. V. Ambartsumyan, Yu. A. Gorokhov, V. S. Letokhov, et al., Pis’ma Zh. Éksp. Teor. Fiz. 23, 217 (1976) [JETP Lett. 23, 194 (1976)].

    Google Scholar 

  9. V. Yu. Baranov, E. P. Velikhov, Yu. R. Kolomiiskii, et al., Kvantovaya Élektron. (Moscow) 6, 1062 (1979).

    Google Scholar 

  10. F. Brunner and D. Proch, J. Chem. Phys. 68, 4936 (1978).

    Article  ADS  Google Scholar 

  11. P. A. Schulz, A. S. Sudbo, E. R. Grant, et al., J. Chem. Phys. 72, 4985 (1980).

    ADS  Google Scholar 

  12. E. Borsella, R. Fantoni, L. Yu-Shen, and M. Nardelli, Nuovo Cimento D 4, 548 (1984).

    Google Scholar 

  13. S. S. Alimpiev, G. S. Baronov, S. M. Karavaev, et al., Kvantovaya Élektron. (Moscow) 10, 376 (1983).

    Google Scholar 

  14. G. N. Makarov and A. N. Petin, Khim. Vys. Énerg. 34, 448 (2000).

    Google Scholar 

  15. G. N. Makarov, E. Ronander, S. P. van Heerden, et al., Appl. Phys. B: Lasers Opt. B 65, 583 (1997).

    ADS  Google Scholar 

  16. G. N. Makarov, V. N. Lokhman, D. E. Malinovskii, and D. D. Ogurok, Kvantovaya Élektron. (Moscow) 25, 545 (1998).

    Google Scholar 

  17. G. N. Makarov, D. E. Malinovsky, and D. D. Ogurok, Laser Chem. 17, 205 (1998).

    Google Scholar 

  18. G. N. Makarov, V. N. Lokhman, D. E. Malinovskii, and D. D. Ogurok, Khim. Fiz. 18, 71 (1999).

    Google Scholar 

  19. G. N. Makarov and A. N. Petin, Kvantovaya Élektron. (Moscow) 30, 738 (2000).

    Google Scholar 

  20. G. N. Makarov and A. N. Petin, Pis’ma Zh. Éksp. Teor. Fiz. 71, 583 (2000) [JETP Lett. 71, 399 (2000)].

    Google Scholar 

  21. G. N. Makarov and A. N. Petin, Chem. Phys. Lett. 323, 345 (2000).

    Article  Google Scholar 

  22. J. B. Anderson, in Gas Dynamics, Molecular Beams, and Low-Density Gas Dynamics (Marcel Dekker, New York, 1974), Vol. 4, p. 1.

    Google Scholar 

  23. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, New York, 1987).

    Google Scholar 

  24. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966; Academic, New York, 1966, 1967).

    Google Scholar 

  25. G. N. Abramovich, Applied Gas Dynamics (Nauka, Moscow, 1991), Part 1.

    Google Scholar 

  26. E. V. Stupochenko, S. A. Losev, and A. I. Osipov, Relaxation Processes in Shock Waves (Nauka, Moscow, 1965).

    Google Scholar 

  27. J. I. Steinfeld, I. Burak, D. G. Sutton, and A. V. Nowak, J. Chem. Phys. 52, 5421 (1970).

    Article  Google Scholar 

  28. W. R. Gentry and C. F. Giese, Rev. Sci. Instrum. 49, 595 (1978).

    Article  ADS  Google Scholar 

  29. V. M. Apatin, L. M. Dorozhkin, G. N. Makarov, and G. M. Pleshkov, Appl. Phys. B: Photophys. Laser Chem. B 29, 273 (1982).

    Google Scholar 

  30. V. M. Apatin and G. N. Makarov, Zh. Éksp. Teor. Fiz. 84, 15 (1983) [Sov. Phys. JETP 57, 8 (1983)].

    Google Scholar 

  31. C. A. Quick, Jr. and C. Wittig, Chem. Phys. Lett. 48, 420 (1977).

    Article  ADS  Google Scholar 

  32. S. S. Alimpiev, Izv. Akad. Nauk SSSR, Ser. Fiz. 45, 1070 (1981).

    Google Scholar 

  33. G. N. Makarov, D. E. Malinovskii, and D. D. Ogurok, Zh. Tekh. Fiz. 69(1), 35 (1999) [Tech. Phys. 44, 31 (1999)].

    Google Scholar 

  34. I. W. Levin and C. V. Berney, J. Chem. Phys. 44, 2557 (1966).

    Google Scholar 

  35. K. O. Christe, E. C. Curtis, C. J. Schack, et al., Spectrochim. Acta A 32, 1141 (1976).

    Article  Google Scholar 

  36. R. S. McDowell, B. J. Krohn, H. Flicker, and C. Vásquez, Spectrochim. Acta A 42, 351 (1986).

    Google Scholar 

  37. G. Baldacchini, S. Marchetti, and V. Montelatici, J. Mol. Spectrosc. 91, 80 (1982).

    Article  ADS  Google Scholar 

  38. CRC Handbook of Chemistry and Physics, Ed. by David R. Lide (CRC Press, Boca Raton, 1993-1994).

    Google Scholar 

  39. Tables of Physical Quantities: Handbook, Ed. by I. K. Kikoin (Atomizdat, Moscow, 1976).

    Google Scholar 

  40. G. N. Makarov, Pis’ma Zh. Tekh. Fiz. 24(23), 35 (1998) [Tech. Phys. Lett. 24, 921 (1998)].

    Google Scholar 

  41. V. M. Apatin and G. N. Makarov, Pis’ma Zh. Éksp. Teor. Fiz. 38, 120 (1983) [JETP Lett. 38, 141 (1983)].

    Google Scholar 

  42. V. N. Bagratashvili, S. I. Ionov, V. S. Letokhov, et al., Zh. Éksp. Teor. Fiz. 93, 1188 (1987) [Sov. Phys. JETP 66, 670 (1987)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 119, No. 1, 2001, pp. 5–15.

Original Russian Text Copyright © 2001 by Makarov, Petin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makarov, G.N., Petin, A.N. Selective multiphoton IR dissociation of SF6 molecules under nonequilibrium conditions of a pulsed gasodynamically cooled molecular flow interacting with a solid surface. J. Exp. Theor. Phys. 92, 1–9 (2001). https://doi.org/10.1134/1.1348456

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1348456

Keywords

Navigation